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1 Introduction

The aim of this paper is to calculate the location of the signal source using the time difference
of arrival technique. The time difference of arrival technique is becoming increasingly more
relevant because it relies on the inexpensive computing power and can be used in various
fields related to geo-locating RF sources, including communication and radar technology,
defense applications, and digital signal processing, e.g., in satellite navigation systems and
specific applications related to the location of mobile phones for emergency and other pur-
poses (see [4] 1-2).

The second chapter of this paper explains the time difference of arrival technique and sets
up the problem — to find the source of a signal by using this technique.

Chapters 3 and 4 define two methods for calculating the position of a sound source in order
to solve our problem. The first method, Friedlander’s Time Difference of Arrival Algorithm,
will provide an initial solution, while the second method, Newton’s method, will be used in
an attempt to improve the initial solution.

The fifth chapter will simulate the time difference of arrival and compare the results obtained
through Friedlander’s and Newton’s methods. It will also try to examine the influence of
the sample rate, the number of sensors, signal to noise ratio (SINR), and sensor position on
the results.

Finally, in the sixth chapter, we will test our methods using real microphones to confirm
that our algorithm works and to investigate whether it is applicable in real life.



2 Setting up the Problem

The time difference of arrival is one of the most popular ranging techniques due to its high
accuracy, low cost of antennas, and lower complexity when compared to other techniques. In
order to calculate the location of the signal source, it is enough to know the sensor positions
and our signal speed. Once we have determined the time difference it took for the signal to
reach two different sensors, we can calculate the difference in distances between the signal
source and our two sensors in order to get a hyperbola where the signal source may be. If we
add more sensors, our signal source location will be at the intersection of hyperbolas (see [8]).

Let us suppose that we have sensors S; and S; and a signal source S which sends a sig-
nal at a speed v. If we label the time it took for our signal to reach our sensors as ¢; and %o,
then if the inital sensor is 57, the time difference of arrival of our signal will be 79, = [to —11].
Multiplying this with the signal speed gives us a distance difference between the signal source
and the sensors r9; = |Ry — Ry|. This information is enough to construct a unique hyperbola
with foci S; and S5 on which our signal source S is located.

Figure 1: S is on a unique hyperbola.



Figure 2: Adding two more sensors provides a unique solution.

Due to hardware imperfections, we will never be able to get perfect time differences of arrival.
Our sample rate can be too low, clock synchronization used to find the time difference of
arrival can be inaccurate, or we will simply have too much noise to find an accurate position.
In order to reduce these effects, we will be using estimation methods to find our solution.
Our methods should also be able to use an arbitrary number of sensors in order to mitigate
the error.



3 Friedlander’s Algorithm

This chapter will focus on how to calculate the position of a sound source using Friedlander’s
Time Difference of Arrival Algorithm. The input will be a list of length M, where the i-th
element in the list will be the difference in transit time between the reference sensor and
the i-th sensor.

3.1 Basic Terms

Let N be the number of sensors.

X; = (x;, yi, z;) are coordinates of sensor 4,5 =1... N.

Xs = (x5, ys, z5) are coordinates of the signal source.

X; = (zj,yj, zj) are coordinates of the initial sensor. The reference sensor j can be any of
the N sensors (see [3] 235).

R;s = || X; — X;|| distance between the i-th sensor and the sound source.

Ry, = || X;|| distance between the sound source and the origin point.

rij = Ris — Rjs = || X; — X|| — || X; — X;]| is the range difference between the sensors ¢ and
4,

3.2 How Signals are Transmitted

In order to derive the solution, one must first explain how signals, more specifically, audio
signals, propagate through the environment. Sound vibrations, which we call sound waves,
move through the environment in a wave pattern by vibrating objects. These objects then
vibrate other objects, and in that way the sound is carried along. As can be seen in Fig. 1,
when sensors (marked as M; and M) receive a signal at times (¢; and t3), multiplying ;
and ty with the signal speed will give us the distance (15 and 755) between the signal source
and sensors M; and Ms, respectively. The difference between these two distances gives us
12 (see [2]).



3.3 Deriving the Solution

Figure 3: An example showing that Ros = r15 + Rys.

Notice that

R, = (rij + Rjs)® = rj; + 2R;sryij + R},
RZ'QS = “XZ - X5“2 = Rzzo - 2X1TXS + R?o'

Subtracting (2) from (1) gives us
QXZ-TXS = RZ-QO — T?j — 2Rj57”¢j =+ R?o — RJQS

(see [3] 239-41).

A special case for i = j in (3) gives us

T _ R2 2 2
2X] XS — RJO + RSO - st-

Finally, by subtracting (4) from (3), we get

2AX: - X;)" X, = (B2 — Rj?o) —_ rfj — 2R;s1i5.

5



This system of N — 1 equations can be written in matrix form as

SiXs = pj — Rjsp; (5)
where
[((z1—25)  (—y) (a—2)]

(xa—z5)  (2—y;) (22— %)

S;j= |1 — %) (o1 —y;) (2-1—z)| € RS
(g —a) (aa—m) (B4 — =)

| env—2) @v—v) (ev—2) ]

[ R%o _R‘?O _T%j ]
R%o _R]zo _ng
1 2: :2 2: N—-1)x1
=g | Byone ~Hho =Gy € RV
Ry~ —T(is1);
L R?Vo _R]Zo _TJ2\7j |
P o |
7”2]'
pi = |rg-n;| € RADxL
T'(j+1)j
L "Ny

We can now compute S;, pt; and p; from the input data.

To get rid of Rj,, which is an unknown quantity, we can multiply (5) with matrix M, where
M has p; in its null-space (Mp; = 0). We will define M]k, D;, and Z as:

Mf = (I - 2)*D;,

where



15
D; = diag(p;)"" = Vig—1)i
j g\pj T(j+1)j
L T'Nj
0 1 0
Z = :
0 1
11 0

whereby k£ can be any natural number, so we will assume that £k = 1. Z is a circular shift
matrix.

Now that we have M, we can multiply (5) in order to eliminate Rjsp;. Finally, we get

M;S; X = Mjp; (6)

According to Friedlander, “it should be noted that M; is a singular matrix,” and, therefore,
it has no inverse ([3] 236). This system can be solved using programs such as Matlab. If we
cannot find the inverse, we can always find the pseudo inverse of M;S;, which exists for any
matrix, and then multiply the left side of the equation (6) with the pseudo inverse. A closed
form solution is given by

X, = (8] M M;S;)7'ST M Myp;. (7)

3.4 A Special Case for Two-Dimensional Space using Three Sen-
sors

We will now perform a closed-form solution for a two-dimensional space in which there are
three sensors. Let n be the number of dimensions, in this case n = 2, and j = 1 be the
intial sensor. Plugging these numbers in equation (8) gives us

[7‘31(352 - 351) — 7‘21(333 — 561)]305 + [7"31(y2 - y1) - 7"21(y3 - yl)]ys = T31My — T21M2 (8)

where 1
m; = §(R?O - Rfo - r?l),i =1 &

The equation (8) can be rewritten as
Ys = QTs + B (9>

7



where

_ 7“21(353 - 951) - 7“31(352 - UUl)
—ro1(ys — 1) + 731 (y2 — 1)’
31y — T'1M2

—7“21(y3 - y1) - 7"31(y2 - yl).

According to Friedlander ([3] 240), the equation (6) establishes “a single straight LOP for
the source coordinates. To get the source location along the hyperbolic lines of position
(LOP) we use the first” two equations from (5) to get

(g — 21)xs + (Y2 — Y1)yYs = My — Rygro (10)
Ry, = (@ — 21)xs + (Y2 — Y1)Ys — ml' (1)
raq

Plugging in (9) into (11) gives us

(.%’2 - ml)xs il (yQ - yl)ys —my

Rys =
21
_ (g — 21)2s + (v2 — y1) (s + B) —
21
_ (2 —21) + (y2 —y1)alzs + (Y2 — 1) B — My (12)
Tor
Notice that R;s can be written as
Ry, = /(21— 25) + (41 — ¥s)?
= Vo = P+ (r — az, — B
= /(L +a2)a2 + (4 — B2 + a3 — 2a1 + (31 — Bale. (13)

Finally, we can square (12) and (13) and equate their left sides to get the quadratic equation

[(z2 — 1) + (y2 — v1)al?x? + 2[(z — 1) + (2 — 1) [(y2 — 1) B — ma]zs + [(y2 — 1) B — M4 ]?
= (1+a”)z + (1 — B)* + 2} — 2[z1 + (11 — B)c]s.

This equation can be rewritten as

az? +brs+c=0 (14)



where

L (40%) — [@ = ) + (g2 — p)al?

b= =2[(z1+ (11 — B)a) — ((x2 — 1) + (y2 — y1)a) (g2 — y1)B — my)],
c=(y— B +a% - {(m — y12)6 — ml}

U3

In order to get two possible solutions, we can solve (14) in the following way:

B —b 4 /b? — 4ac
- 2a ’
Ys = Qg +6

Ts

3.5 A Special Case for Three-Dimensional Space using Four Sen-
sors

Like in the case of the two-dimensional space, we will perform the case for a three-
dimensional space with four sensors. Let 7 = 1 be the initial sensor and n = 3. According
to Qu et al.([11]), plugging these numbers in equation (6) gives us

[r31(z2 — 1) — ro1(z3 — @1)]2s + [r31(y2 — v1) — ro1(ys — y1)]ys+

[7“31(Z2 - 21) - 7”21(23 - 2’1)]% = T31My — T'21M2
and

[ra1 (e — 1) — rs1(@3 — 1)) + [Tar(y2 — v1) — r31(ys — y1)]ys+

[7“41(Z2 - 21) - 7“31(23 - 21)]»25 = Tq1Mo — T31MN3.

For the sake of convenience, we will write the last two equations as

Arzs + Brys + Cizs = Dy (15)
A2$s + B2ys =+ CQZS = D2- (16)

If we multiply (15) with Cy and (16) with Cj, then subtract the new equations, we get
(A1C5 — AxCh)zs + (B1Cy — ByCh)ys + (C1Cy — CoCh)zs = D1Cy — Dy CY

or
Ys = uxs + b (17)
where
G — _A1C'2 — AyCy
' BIG, - BG,
51 _ 5152 _gle (18)
22— 23 e



We can now substitute (17) in (15):

Aizs + Bi(ogzs + B1) + Cizs = Dy
(A1 + a1B1)zs + Cr2zs = D1 — 1By

Similarly to (17), we will write the equation above as

Zs = Qa5 + 62

where
P _A1 + Cl(lBl
b= —C1
D, — B
S 19
b= 2t (19)

As in the n = 2 case, (6) will give us a single straight LOP for the source location. In order
to get the source location along the LOP, we use the first two equations from (6) ([3] 240):

(e — z1)s + (Y2 — y1)Ys + (22 — 21)2s = My — Rysror. (20)

Now we can insert the equations (18) and (19) in (20)

- s (07 — o —
R1s=—(x2 21)Ts + a1 (Y2 — Y1) + a2 Z1>ms

21
my — — — (29 — 2
4 1 (yz 912051 (2 1)5220433554—63. (21>
21

Note that R can also be written as

Ris = /(21— 25)% + (y1 — ¥s)? + (21 — 2)?

= \/(1 + a2 +ad)x2 — 2[z1 + (11 — Br)oa + (21 — Ba)as]zs + (y1 — 1)? + (21 — B2)? + 2.
(22)

Finally, we can square equations (21) and (22) and equate their left sides in order to get a
quadratic equation similar for n = 2

azx® +brs+c=0 (23)
where

azl—i—oz%—i—ag—ag
b= —2(z1 + (y1 — Bi)oa + (21 — Br)aa + as3fs) s
c=(y1 — B1)’ + (21 — Bo)* + 2] — 55-

10



Like in the 2d case, we can solve (23) for z;, y,, and z, as follows:

—b+ /b2 — dac
N 2a ’
Ys = 1 Ts + i,
Zs = Qo5 + Pa.

11



4 Newton’s Method

Once we have calculated an initial solution, we can begin to improve it by using an iterative
method. One of the proposed methods is Newton’s method. The term “Newton’s method,”
which is also known as “Newton-Raphson method,” refers to “a root-finding algorithm
which produces successively better approximations to the roots (or zeroes) of a real-valued
function (using fixed point iteration)” ([1]). The method is an iterative technique that can
improve the initial solution. It can be used “for solving general nonlinear equations using
calculus” and “solving optimization problems by setting the gradient to zero” ([1]). The
original Newton’s method, first published in 1685, was applied only to polynomials. It was
neither connected with derivatives nor was it presented through a general formula. It was in
1740 that British mathematician and inventor Thomas Simpson defined Newton’s method
“as an iterative method for solving general nonlinear equations using calculus,” which has
led to the method’s contemporary definition ([1]).

Let us show how we can derive Newton’s method in two dimensional space. Suppose that
we are trying to find the root of a function f. Let us pick z( as the first approximation of
the root. We can find the value of f(z() and calculate the slope k of the tangent line of f in

the point z as f’(x).
/f(»%)

Az

Loptimal L1 by

Figure 4: The tangent line intersects the x axis in the point z;.

Notice that x; is closer to the optimal solution than xy. Now we have to find a way to
A

calculate z;. First let us notice that 1 = o — Az. We also know that k = A—g, which means

12



that Az is equal to Ay or jf (( )) Finally, this gives us

Ty = Ty — f(«TO)
f'(zo)
We can repeat this process in order to get a more generalized version:
f(zr)

Tky1 = T — f,(l'k) .

Newton’s method can also be similarly derived for n dimensional spaces. The goal now is
to define a function for which we can find the root as our solution. We will define it by
applying the formula by Qu et al. ([11]):

fim,y,2) = /(& —2)? + (y —9)? + (2 — z:)? — \/(w—ﬂfj)2+(y—yj)2+ (z — 2)* — cmy;
i=1,2,...,ni%]

where j is the initial sensor and c is the speed of sound in our medium. The derivative of
the function f;(x,y, z) with respect to = can be found in the following way:

O(x—z;)?
Ofi(x,y,2) 1 A
N T R
! rn
2y/(x—2)?+ (y—y;)? + (2 — %)?
. r — T
Viz—z:P +y—w)P + (2 — %)
€L = l‘j

Vi —2)2+ @y —y;)2+ (z— 2)?

Similarly, the derivative of the function f;(z,y, z) with respect to y and z will be:

8fi(x,y,z) _ Yy—UY
ay \/(Jf - xl)2 e (y y1)2 ya (Z - 21)2
Yy—Y;

and
8fi($7yaz) _ £ =z
oz V=2 + -yl + (z — %)
&z — Zj

Ve =22+ (y — 92 + (= — )2

13



We can now define the Jacobian matrix of f(x,y, z) as

[ Vfi(z,y,2) ]
Vfg(m,y,z) oh  oh 9N

| o2 02 0
fly2)=| Vialsy2)|=|% % %
ij+1(x7yvz) % % %
: or 0y 0z

| Viuz.2) |

Finally, we can calculate the pseudo inverse f'(x,y,z)~! of our Jacobian matrix in order to
find our estimated result as follows:

[ fl(xka Yk, zk) |
Folzn, Ys, 25)

Lh+1 T :
Yerr | = |k | — F'(@r e, 26) ™" | Fima (T, Yk, 25)
Zht1 2 fiv1(xr, Yk, 2x)

| fu(Zk, Yk, 21)

Newton’s method is very accurate and fast, but in order for it to converge fast, the first
approximation must be close to the true location. By combining our first estimated result
from Friedlander’s method with Newton’s method, we can get an accurate and fast new
method.

14



5 Experimental Results

In this section we will describe how results can be modified by using more sensors, by
changing the sample rate and the effect of SNR, and by different sensor placement.

5.1 Improving the Solution using more Sensors

One of the main advantages of our implemented methods is that we are easily able to add
more sensors in order to improve the solution. This will be able to somewhat compensate
for noisy signals or inaccurate clocks in our sensors.

10.0

FA

50
M3 M4

w .
S possible §

5
25 M1 M2
L .

0.0

-10.0 T T T T T T T
-10.0 -1.5 -5.0 -25 0.0 25 50 75 10.0

Figure 5: Our possible source location is not very close to the real location.
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10.0
75
5.0 1
M3 M4
v .
possible S S
L] -
25 4 M1 M2
o .
M5
0.0 1 .
-25
-5.0
-1.5
-10.0 T T T T T T T
-10.0 -1.5 -5.0 2.5 00 25 50 15 10.0

Figure 6: Adding another sensor already improves the result.

We will try to simulate the results using Friedlander’s algorithm when we choose a different
number of sensors. All the sensors will have a sample rate of 44kH z. We will be generating
100 random points for each distance and taking the average error.

30000 +

25000 A

20000 4

15000 A

10000 ~

Absolute error (in cm)

5000 A

T T T T T T
0 5000 10000 15000 20000 25000 30000
Distance (in cm)

Figure 7: Average absolute error for a different number of sensors.

The results have shown that there is a significant improvement if we use more than five
sensors. However, randomly using more than six sensors does not necessarily give us better
results. We would need to carefully pick where the new sensors are placed if we want to
take advantage of their additional information.

16



5.2 Simulating the Time Difference of Arrivals
5.2.1 The Sampling Rate

Before we try to simulate our time difference of arrival, let us explain the difference between
discrete and analog signals and how sampling rate is defined. The term signal is generally
applied to something that conveys information. An example for that would be a sound that
we have heard. We can think of these signals as mathematical functions of time. These
types of signals are known as analog signals. Analog signals are usually very difficult to store
and difficult to replicate. Instead of trying to replicate the analog signal, what we can do
is get the values of our signal at certain periods in order to get an estimation of our analog
signal. This is known as sampling. The term discrete-time signal is used to describe signals
whose value is known at discrete instants in time. In our simulation, this will be a vec-
tor of n values, where the i-th value in the vector corresponds to the value of our i-th sample.

—— = —

e /\V/\_AL\/(\V/\/\ /\V

| - | :

Figure 8: The analog signal of speech audio as a function of time (][9] 10).

I 256 samples |

Figure 9: A discrete signal taken from the analog signal with a sample period of T' = 0.125us
([9] 10).

Now that we have defined discrete signals, it is easy to see that the sampling rate is simply
the number of samples we will take in a certain period. If we know our sampling period
T, then the sampling rate Fj is equal to % In the figure above, we had a sample period of
0.125ps, which gives us a sampling rate of 8kH z.

5.2.2 Generating the True Time Difference of Arrival

In order to calculate the true time difference of arrival, we will assume that our sensors’
positions and signal source positions are known. By knowing the locations of each sensor

17



and signal source, we can also calculate the distance between the signal source and each of
the sensors. Dividing our distances with the speed of our signal gives us the time it took
for the signal to reach each sensor. Let us store these values for m sensors in a sequence
t ={t1,t2,...,t,}. We can now pick an arbitrary t; and subtract it from every value in our
sequence t. This gives us our true values for the time difference of arrival:

T:{tl—tj,tg—tj,...,tj—tj,...,tn—tj}

:{le,ng, . ,0, s e 7Tnj}-

5.2.3 Creating Fake Samples

For our initial signal, we will be using an audio file with a sample rate of 44 kHz. It is
recommended that the audio has distinct sounds, otherwise we will not be able to get a clear
picture of the signal due to the added noise from the environment.

Sample Wav

20000 -

15000 A

10000 A

5000 4

Amplitude

—5000 A

—10000 -

—15000 A

T T T T T T T
0 10000 20000 30000 40000 50000 60000
Samples

Figure 10: An example of a usable audio.

For simplicity’s sake, let us assume that the j-th sensor is the first sensor which received
our sound signal. Therefore, the signal as received by the j-th sensor will be the original
sound file. In order to generate other samples, we will multiply 7;; with our sampling rate,
Vi # j in order to get the number of zeros with which we will pad our original audio signal
in order to create a fake signal 7. For now, let us also add a little bit of noise in order to
make it look a bit more realistic. In a later section we will explain how exactly noise is
simulated and how it affects our results.
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Sample Wav

20000 A

15000 A

10000 A

Amplitude

—5000 A

—10000 A

—15000 A

T T T T T T T T
0 10000 20000 30000 40000 50000 60000 70000
Samples

Figure 11: Two similar audio signals are received at different times.

5.2.4 Calculating the Distance between Discrete Signals

There are many ways to find the distance between two similar signals, one of which is using
cross-correlation. It is defined with

Roy(k) = 3 aliyli — k).

I=—00

Cross-correlation is usually used to measure the similarity between a signal z and a lagged
signal y, which is perfect for us because this is exactly what our sensors will receive.
Calculating the cross-correlation between signals x and y will give us a vector of correlation
values along with a corresponding vector of sample shifts. After calculating the correlation
vector, we will take index ¢ of the largest value in our correlation vector and find the -th
value in our sample shift vector. This gives us the distance in samples between the two
signals. Now all we need to do is divide our sample shift ¢ with the sampling rate in order
to calculate the time difference of arrival between the two sensors which received signals z
and y.
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0 10000 20000 30000 40000 50000 60000

Figure 12: Plotting the cross correlation vector gives us a noticeable peak.

To summarize, we will calculate the cross correlation vector Ryy = {Ryy(—m), ..., Ryy(n)}
using vectors ¢ = {z1,...,2,} and y = {y1,...,yn}. After calculating R,,, we will find
the index ¢ = argmax;e;_,, .3 Rey for which R, has the maximum value. Once we

have found ¢, we can calculate 7;; as . We repeat this for all the sensors in order to

get our vector 7. For the implementation of time difference of arrival in Python, see
https://gitlab.com/druntic/tdoa.

5.3 A Comparison between Friedlander’s and Newton’s Method

Now that we have simulated the time difference of arrivals, we can start to evaluate the
results. We will generate 100 random sound sources, where each sound source will be
roughly the same distance from the origin. The points of interest will be the average and
median values of these 100 sound sources. We will use nine identical sensors placed no more
than 10cm apart from each other, with a sampling rate of 44 kH z.
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Figure 13: Average error in approximation between the real sound source and an estimated
sound source from 100 generated sound sources.

Taking a look at the figure above shows us that Newton’s method gives us very inaccurate
results with the initial implementation. In order to understand why, let us take a look at
the median values of our distances of sound sources.

30001 . Hiedlander

—=— Newton
2500 A

N
(=
(=
o
L

absolute error in approximation
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(=] w
(=] (=]
o o
L !

500 4

T T T T T T
0 5000 10000 15000 20000 25000 30000
distance

Figure 14: Median error in approximation between the real sound source and the estimated
sound source from 100 generated sound sources.

Now we can see that the median distance value of our 100 points generated by Newton’s
method is actually similar or better than median values obtained by Friedlander’s method.
The issue with the proposed Newton’s method lies with our initial approximation. If the
initial approximation of our sound source is too far from the original source, then Newton’s
method will diverge from the true location. According to [10], we might be able to solve this
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in the following way:

f(z)

Tky1 = Tk — f'(xk)-

Suppose our solution xj converges to some number L, taking the limit from the equation
above gives us

L=L—lim &)
k—o0 f/ (xk)
Subtracting L from both sides, we get
flaw) _ g

This means that as we approach our optimal solution, | J{,((g;’z)ﬂ should decrease. As long as

| Jf,((:;‘;))l > | ]{,((Z’:fl)) |, we will know that our results are going in the right direction. Now that

we have established a convergence criterion, let us once again check the average distances.
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10000 4 —— Newton
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t" {
4000 - _
2000 - '
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Absolute error (in cm)

0 o=

T T T T T
0 10000 20000 30000 40000
Distance (in cm)

Figure 15: Average error in approximation after correction

As we can see, Newton’s method improves our results after our distance between the sound
source and origin point is over 300m.

5.4 The Sampling Rate

The sampling rate is one of the most important factors in order to get an accurate time
difference of arrivals. Using cross correlation, we calculated the distance in samples between
two received signals. One of the problems when we are sampling signals is that we can only
sample at certain periods 7. This means that the distance in samples, when comparing the
two signals, will always be a multiple of T". In reality this number is never an integer but a
real number. Let us have a look at the signal with the sample lag S,,, which we got using
cross correlation.
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Figure 16: Distance between the cross correlation generated lag nT', and the true lag t is At.

We can see that the distance between S,,_1 and S, is exactly one sample. Our point of interest
is the optimal sample. At is also known as fractional delay. The closer our estimation is
to the optimal location, the better our time difference of arrival results will be. Now let us
have a look at what will happen if we double our sampling rate.

'Sin 2 ‘S:)pzz"/a-v,u[ g
~ — 00— 2n—1
62:/‘ \%
At
2n—-3)T (2n—-2)T t(2n—1)T 2nT AN

Figure 17: Increasing the sample rate decreases At.

We can see that our new sample Ss,_; is closer to the optimal sample Spptimq than the
sample Sy,, which we got using the original sampling rate. Increasing the sampling rate
does not always guarantee a decreased At, but at the very least, it will never give us a
worse result. These days most sound cards use a sampling rate of 44 kHz due to the human
range of hearing being around 20 kH z, which corresponds to Nyquist’s theorem [7], which
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states that if a signal has a maximum frequency f, then the sampling rate has to be at
least 2f in order to get an accurate representation of the signal. Professional microphones
for detecting the time difference of arrivals can have a sampling rate of over 250 kHz. We
will now simulate our TDOAs with different sampling rates and simulate the results using
Friendlander’s algorithm.

55000 1 T 22 KHZ
1T —— 44kHz
—— 88 kHz
—— 192 kHz
20000 -
E
“
£
T 15000 -
g
[/]
s
=
< 10000 -
W
0
<
5000
0 -

T T T T T T
5000 10000 15000 20000 25000 30000
Distance (in cm)

Figure 18: Comparison between different sampling rates using nine sensors.

As we can see in Figure 18, by changing our sampling rate, we can greatly improve our
estimated location accuracy.

5.5 Signal to Noise Ratio

One of the problems when receiving a signal is the added noise from the environment. If the
signal is too noisy, the cross correlation will not be able to provide accurate results. Almost
all sensors have information about signal to noise ratio, otherwise known as SNR. This is
simply the ratio between the average power of the signal and the average power of the noise:

Piinai
SNR = 2o,
Pnoise

We would like to simulate the results when the SN R changes; thus our goal will be to add
Additive White Gaussian Noise (AWGN) to the signal according to the SNR. Generally,
most manufacturers give the SINVR in decibels

Psi na
SN Rap = 10logi l

where the average power of our discrete time domain signal is

n

1
Psignal - ﬁ Z.I’(t)2

t=0
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This means that if our SNR is negative, then the average noise power is larger than the
average signal power:

= Psignal,dB - Pnoise,dB-

Now we can clearly see that the average noise power is simply the average signal power minus
the SN R. Converting this from decibels gives us

Pnoise,dB

Pnoise =10 10

Now that we have calculated the average noise power, we will create a Gaussian random
variable with a mean p = 0 and variance 0? = P, and add it do our signal.

Sample Wav

30000 -

20000 A

10000 -

Amplitude

—10000 A

—20000 -

T T T T T T T
0 10000 20000 30000 40000 50000 60000
Samples

Figure 19: Our original signal with SNR = 0.

As we can see, even with the average noise power being equal to the average signal power,
it will still resemble the original signal. Cross correlation is very robust to noise. We will be
able to see this as long as the standard deviation of the noise is not larger than the peak in
the signal which we will transmit ([4] 3).
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Figure 20: Distance error decreases as we increase SN R.

For this specific audio signal we were able to get the correct time differences of arrival start-
ing from SINR = —12. The best case scenario for our audio signals would be complete silence
followed by short bursts of sound (e.g. gunshots), while the worst case would be white noise.

5.6 Sensor Placement

For the next experiment we will try to use a few different sensor configurations in order to
see how they affect our results. Every configuration will be placed on a 20cm x 10cm x 10cm
box and will use exactly six sensors. The last two configurations will have one sensor placed
10cm away from the box. This should have a significant impact on our results.

Sensor 1 Sensor 2 | Sensor 3 | Sensor 4 Sensor 5 | Sensor 6
Configuration 1 | (-10,-5,-5) | (10,-5,-5) | (-10,5,-5) | (-10,-5,5) | (10,5,5) | (10,-5,5)
Configuration 2 | (-10,-5,-5) | (10,-5,-5) | (-10,5,-5) | (-10,-5,5) | (10,5,5) | (10,5,-5)
Configuration 3 | (-10,-5,-5) | (10,-5,-5) | (-10,5,-5) | (-10,-5,5) | (10,5,-5) | (10,-5,5)
Configuration 4 | (-10,-5,-5) | (10,-5,-5) | (-10,5,-5) | (-10,-5,5) | (10,5,5) | (0,5,0)
Configuration 5 | (0,-5,5) (10,-5,-5) | (-10,5,-5) | (-10,-5,15) | (10,5,5) | (0,5,0)
Configuration 6 | (0,-5,5) (10,5.5) (-10,5,-5) | (-10,5,15) | (10,5,-5) | (0,5,2.5)
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Figure 21: The six configurations we will be using.
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Figure 22: Results of each configuration.
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We can see that the fourth configuration has a massive increase in accuracy when compared
to the previous three configurations. Configurations five and six have also had an increase
due to one sensor not being inside of our box. We can compare this to placing an antenna
on our box in order to increase the distance.
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6 Applying Friedlander’s Algorithm in Real Life

6.1 Equipment

For this experiment we will be using four identical microphones with sample rates of 44 kHz
with coordinates

(—0.04875,0,0), (0.04875,0,0), (—0.0403, —0.00425, 0.02852), (0.0403, —0.00425, 0.02852)

in meters. Since our algorithms required at least five microphones in order to work in 3D,
and we had only four microphones, we tried to find a solution in 2D instead of in 3D. The
microphones were placed in such a way that all of them were on the same plane; this means
that even if our algorithms had been able to calculate the position using four microphones,
it would still have given us at least one coordinate which was wrong. An explanation of the
issue will be given in 2D.

Figure 23: Using three microphones to generate two possible solutions.

Let us assume that our initial microphone is M; and our sound source is S. Using three
microphones, we can generate two hyperbolas; their intersection will give us two possible
solutions. If we place the 4th microphone on the same line as the rest of them, we will get
no additional information and Friedlander’s algorithm will not be able to figure out in which
direction to look.
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Figure 24: Using four microphones on the same line still gives solutions S and P.

Figure 25: Moving M4 in the y-axis provides a unique solution S.
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6.2 Results

Due to the problem mentioned above, we will ignore the second coordinate in all our
results. Our results will be measured in meters, and our initial microphone will be the third

microphone.

True position

Estimated position

True sample lag

Estimated sample lag

[-0.108, -0.09, -0.018]

[-0.0122, 0.0003, -0.0022]

[1.23, 8.15, 0.0, 7.61]

[1, 11, 0, 11]

[-0.128, 0.091, -0.018]

[0.0322, -0.0018, 0.0121]

[-2.01, 8.03, 0.0, 7.94]

[1, 8, 0, 10]

[-0.062, 0.123, -0.018]

[0.0108, -0.0015, 0.0103]

[1.58, 3.79, 0.0, 4.21]

[_15 37 07 5]

[0.051, 0.091, -0.018]

[-0.0422, -0.0066, 0.0444]

[-0.47, -6.10, 0.0, -4.32]

[2, -8, 0, -6]

[0.059, -0.052, -0.018]

[0, 0.0014, -0.0098]

[0.17, -8.24, 0.0, -6.52]

Fl, =10, 10, =19

[-0.124, 0.07, -0.018]

[0.0145, 0.0005, -0.0035]

[2.18, 8.56, 0.0, 8.42]

[0, 12, 0, 13]

[0.136, 0.013, -0.018]

[-0.0463, -0.0017, 0.0120]

[0.37, -12.06, 0.0, -9.76]

[2,-14, 0, -13]

Due to our microphones being too close to each other, we were not able to get satisfactory
results. At these distances, a difference in samples of 1 to 4 will generate completely different
locations compared to the original locations. One of the solutions is to use better microphones
or to increase the distances between them. We will also have to care about their positioning
so that at least one microphone is not on the same plane as the others.
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.
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Figure 26: Using four microphones generates a bad estimated solution.
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Figure 27:
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Placing a fifth microphone gives us a much better
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7 Conclusion

Based on the simulation of time difference of arrival conducted in this analysis, it can be
concluded that time difference of arrival can produce precise results, even when the sensors
are extremely close.

Friendlander’s algorithm has been used to derive the first approximation due to its
simple implementation and ability to add any number of sensors. We have also devised a
way to improve the initial solution using Newton’s method.

Depending on the signal, cross correlation is able to handle signals with a negative
SNR. Increasing the sample rate can drastically improve our results. Adding more
sensors does not necessarily improve the accuracy. Because of that, in order to use the
new information obtained by the added sensors, the sensors must placed in optimal locations.

We were not able to get satisfactory results in real life due to bad sensor placement,

not enough sensors for 3D, and bad clock synchronization between sensors, which resulted
in imprecise calculation of time difference of arrival.
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Abstract

The aim of this paper is to find the location of a signal source using time difference of arrival.
The paper first defines time difference of arrival and how it can give us a unique solution.
It proceeds to present two estimation methods — Friedlander’s Time Difference of Arrival
Algorithm and Newton’s Method. The first method provides an initial solution, while the
second method attempts to improve on the initial solution. After deriving the algorithm, we
attempted a simulation of time difference of arrival using an audio file, an arbitrary number
of sensors whose locations are known, and a signal source whose location is also known. An
attempt at simulating the effects of different number of sensors, the distance between sensors
and source location, the sample rate, the signal to noise ratio, and, finally, different sensor
placements on our accuracy has also been conducted. In order to confirm the accuracy,
the algorithm has been tested using real microphones. The analysis of time difference of
arrival has produced the following results. The results obtained through a simulation of
time difference of arrival can be precise, even when the sensors are close to each other. Cross
correlation can handle signals with a negative SNR. Whereas increasing the sample rate
can drastically improve our results, adding more sensors does not necessarily improve the
accuracy. For the accuracy to be improved, the sensors should be placed in optimal locations.

Keywords: time difference of arrival, Python TDOA implementation, TDOA sample rate,
TDOA noise, TDOA Newton, Friedlander’s Algorithm
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