Generative Pre-Trained Transformers: Architecture,
Pre-Training and Fine-Tuning

Susac, Ivo

Undergraduate thesis / Zavrsni rad
2024

Degree Grantor / Ustanova koja je dodijelila akademski / strucni stupanj: Josip Juraj
Strossmayer University of Osijek, School of Applied Mathematics and Informatics /
SveuciliSte Josipa Jurja Strossmayera u Osijeku, Fakultet primijenjene matematike i
informatike

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:126:086357

Rights / Prava: In copyright /Zasti¢eno autorskim pravom.

Download date / Datum preuzimanja: 2024-12-23

Repository / Repozitorij:

mat h OS Repository of School of Applied Mathematics and

Informatics

zir.nsk.hr

aodar

DIGITALNI AKADEMSKI ARHIVI I REPOZITORLII

https://urn.nsk.hr/urn:nbn:hr:126:086357
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.mathos.hr
https://repozitorij.mathos.hr
https://zir.nsk.hr/islandora/object/mathos:883
https://repozitorij.unios.hr/islandora/object/mathos:883
https://dabar.srce.hr/islandora/object/mathos:883

©

Josip Juraj STROSSMAYER UNIVERSITY OF OSIJEK

ScHOOL OF APPLIED MATHEMATICS AND INFORMATICS

Undergraduate University Study in Mathematics and Computer Science

Generative Pre-Trained Transformers:
Architecture, Pre-Training and Fine-Tuning

UNDERGRADUATE THESIS / FINAL PAPER

Supervisor: Student:

Dr. Domagoj Matijevig, Ivo Susac
Associate Professor

Osijek, 2024

Contents

1 Introduction

2 Text data preprocessing

ol ToRERS R o an o o s o o o o 5 e 3 e e
211 Word-Based Tokenization
212 Chatactertascs Tokenizafion c « w s« scw khim ass 55 s
2l Lple-LaFrERRRiiE - o o e s swsee Gae & s 8 s EE
22 Bolrnliiues ; oo cmocmeswasme s semessscE s ey
221 TokenEmbeddings
222 Positiongl Bacoding . - is as s siusimnisaiasios
3 The Transformer Block
31 Belt-AMerition «::z2::5cissiassansasisasassasioa
3.1.1 Scaled Dot-Product Attention with Casual Masking and
IROPEIHE « < 5 0 85 008 85088638 6dssdmka@Ed o
802 RNiuleClegd BEEDEHGH < o s s e vw bsw b whaiw a5 54 %
22 LaypErNermElElien « .« ccnwarsmsam b Baw & s 8w E s
%3 Pully-Comeoted Lager . « o swwsmeisssnucmnsn s mes s
4 Pre-Training
41 AdamOplimizer : :::sscasscansarismsnpinsisass
Ld TERiREIEE - o o o v o B 6 S 6 v e T e
5 Fine-Tuning
51 Parameter Bificient PineTUDIAE - : s a5 5 s 30 5 59 5 55 55 # 5
511 LoRAFine-Tuning
D2 PromptTUring » « « s =5 5 s 6 6 26 5 v 6656 8 50 8 55
References
Summary
About the Author

1 | Introduction

Large language models (LLMs) are deep neural network models that have rev-
olutionized the field of natural language processing (NLP) and amassed large
popularity in recent years due to their exceptional ability to interpret and gener-
ate human language. Most modern LLMs rely on the Transformer [1] architecture
which has excelled at various NLP tasks such as machine translation and docu-
ment generation. A specifically popular subset of LLMs are Generative Pretrained
Transformers (GPTs). First developed by OpenAl [2], GPT models (such as those
powering the very successful ChatGPT) have surpassed traditional NLP models
in both versatility and performance by pre-training on vast amounts of text data
and fine-tuning on specific tasks. They also show great execution of zero-shot and
few-shot learning tasks [3].

GPT models generate text using an advanced pipeline with multiple stages (1.1),
each critical to the model’s overall performance. The pipeline begins with text
preprocessing, where raw textual data is projected into a vector space and pre-
pared for further analysis. These vector representations, called embeddings , serve
as input for the Transformer decoder blocks, which implement mechanisms for
context-aware language modeling such as self-attention. After a few postprocess-
ing steps, the model generates output text.

Gan sformer decoder bloc@*

A

This s a

Y v A 4
2653 210 11

F

‘ Input Text ' (Token embeddings)i (Qutput text)

Thisis a I | | || | I | This is a sentence._ ..

Figure 1.1: The text generation pipeline of a GPT model.

To generate coherent text, the model is subjected to pretraining on massive
datasets, learning sophisticated language patterns and next word prediction by
leveraging self-supervised learning. Finally, the model undergoes fine-tuning on
specific datasets to specialize in particular tasks, such as text classification or ques-
tion answering.

This thesis aims to explore and dissect each stage of this process, providing a com-
prehensive explanation of how Generative Pretrained Transformers are built and
what makes them such a powerful tool in the field of NLP.

2 | Text data preprocessing

2.1 Tokenization

For machines, interpreting unstructured text data is inherently challenging.
Tokenization solves this problem by converting raw text into a structured format
by breaking the text down into smaller units called tokens, followed by assigning
a unique ID to each token to get their numerical representation. These tokens
can represent various elements of the text, such as words, subwords, or even
individual characters, depending on the chosen tokenization strategy. Each
token can be analyzed in the context of the tokens surrounding it, allowing for
high-quality sequential text generation.

There are several tokenization techniques, each offering distinct benefits
and trade-offs.

2.1.1 Word-Based Tokenization

The most commonly used tokenization technique is word-based tokenization. It
simply splits a batch of text into words using a delimiter, typically a whitespace.
Punctuation characters are also accounted for, being encoded as separate entries.
This is an important step, as the model’s vocabulary shouldn’t include every
possible punctuation of every word.

Word-based tokenization is straightforward to implement using Python’s re
library. An example implementation is provided below.

1 import re

)

3 def word_tokenizer (text):
4

tokens = re.findall(r’\w+]|[~\w\s]’, text)
return tokens

Running the above function on the text: "Hello, world! How’s everything?"
gives us the resulting output:

1 [’Hello’, ’,’, ’world’, ’!’, ’How’, "’", ’s?, ’everything’, 7]

2.1. TOKENIZATION 4

To map the previously generated tokens into unique token IDs, a vocabulary is
built. The vocabulary defines the mapping of each word and special character
to a unique integer value. It also contains an <|unk|> token to handle out-of-
vocabulary words and an <|endoftext|> token to add a padding between unre-
lated texts (which helps the model understand which parts of the training data
are connected). This process is illustrated in the figure below.

The dog barks. —m The | dog |barks . =|unk]= | =|endoftext|=
0 1 2 3 4 by

Figure 2.1: Example token IDs for a 6-word vocabulary consisting of the following
tokens: "The", "dog", "barks", ".", "<|lunk|>", "<|endoftext|>".

While this tokenization technique is widely used, it has some drawbacks. Since
every distinct word in the training data will be assigned a corresponding token,
the vocabulary size can become extremely large, which will increase memory us-
age and may result in slower model performance. Furthermore, words not en-
countered during training will not be represented in the vocabulary, impacting
the model’s ability to generalize to unseen data or handle languages with a large
number of unique words.

2.1.2 Character-Based Tokenization

In character-based tokenization, each token represents a character in the text.
Since a language has many different words but only a limited, comparatively
small amount of characters, this type of tokenization leads to a small vocabulary,
reducing memory and time complexity. Another major benefit of character-level
tokenization is that the vocabulary will include all possible characters, eliminat-
ing the out-of-vocabulary problem.

However, representing text at the character level increases the length of to-
ken sequences by a significant margin, which can lead to longer training and
greater memory requirements. Also, individual characters lack semantic mean-
ing in language, which makes it harder for models to capture context-relevant
relationships effectively.

2.1.3 Byte-Pair Encoding

Byte-Pair Encoding (BPE) is a subword tokenization technique that serves as
a compromise between word-based and character-based tokenization. First
described in [4] as an algorithm for data compression, it has since been modified
to serve as a tokenization algorithm which guarantees that frequently occurring
words are represented as single tokens in the vocabulary, while less common

2.1. TOKENIZATION 5

words are split into two or more subword tokens.

Firstly, a base vocabulary will be created, consisting only of the characters
contained in the words. In real-world scenarios, this initial vocabulary would
include all ASCII characters and possibly some Unicode characters. After getting
the base vocabulary, new tokens are added until a set vocabulary size is reached.
This step is done by learning merge rules that specify how two existing tokens
can be combined into a new token. During each step of BPE, the most frequent
pair of consecutive tokens in the corpus is identified and merged into a new
token. This process repeats iteratively as the algorithm forms longer subword
tokens.

As a simple example ([5]), let’s consider a vocabulary that consists of five
words: "hug", "pug", "pun", "bun" and "hugs". Let’s assume the words have
the following frequencies:

(”hug“, 10), (upugn, 5)’ (upunu’ 12)’ (”bun“, 4)’ ("hugs", 5)

which means that "hug" appeared 10 times in the corpus, "pug" appeared 5
times, "pun" appeared 12 times, "bun" appeared 4 times and "hugs" appeared 5
times. The first step is to split each word into individual characters:

(”h" nun " u’ 10)’ (npu nun ugn’ 5), (upn nuu nnn’ 12), ("b" nuu
nnu’ 4)’ (“h" uuu ngn ”S", 5)

The algorithm then looks for the most frequent token pairs. In this case,
the pair ("u", "g") appears 20 times, making it the most common pair. As a result,

n n n "

the first learned merge rule is ("u", "g") -> "ug", adding "ug" to the vocabulary.

" n

The corpus is also updated accordingly, replacing instances of "u" and "g" with
"ug." Next, the algorithm finds the pair ("u", "'n"), which appears 16 times, and
merges it to form the token "un." Let’s look at the state of the vocabulary and

corpus after these changes:

Vocabulary: ["b", ugn’ "h", nnn’ npn, "S", uuu’ nugn’ nunn]
Corpus: (“h" nugn, 10), (npn uugn’ 5)’ (n n nunn, 12)’ ("b" nunn’
4), ("h" nugn ”S", 5)

The process continues with the most frequent pair ("h", "ug") being merged to
form "hug." This leads to the creation of the first three-character token.

Vocabulary: ["b", ugn’ "h", nnn’ npu, "S", uuu’ nugn, uunn, "hug"]
COIPUSI ("hug", 10)’ (npn uugn’ 5), (upn nunn’ 12), ("b" nunn, 4)’
("hug" "S", 5)

The process of identifying and merging the most frequent pairs continues
iteratively until the desired vocabulary size is achieved.

2.1. TOKENIZATION 6

Byte-Pair Encoding tokenization solves problems word-based and character-
based techniques struggle with. It can represent any word by breaking them into
subword tokens, removing the out-of-vocabulary problem. The vocabulary size
is controllable, which balances the trade-off between word-based and character-
based tokenizers. It also excels in representing semantic meaning of text since it
can tokenize recurring subword fragments. Byte-Pair Encoding is used by many
Transformer models, including GPT-2, GPT-3, BART, RoBERTa etc.

An example of tokenizing text with Byte-Pair Encoding can be shown using
tiktoken, a Python open-source library which efficiently implements BPE:
1 import tiktoken
3 # we load in the GPT-2 BPE tokenizer with a total vocabulary
size of 50257
4 tokenizer = tiktoken.get_encoding("gpt2")
6 encoded_txt = tokenizer.encode("Hello, world! How’s everything?"

)
7 print (encoded_txt)

The above example will give the following output:
1 [15496, 11, 995, 0, 1374, 338, 2279, 30]

We observe that the encode function performs two steps in one, splitting the text
into tokens and converting them into token IDs.

2.2. EMBEDDINGS 7

2.2 Embeddings

The final step in preparing input text for training involves transforming token IDs
into embedding vectors, which are essential for representing tokens in a continu-
ous vector space.

2.2.1 Token Embeddings

Let the vocabulary size be V and let each token be represented by an index
i € {0,1,..,V —1}. Instead of using one-hot encodings, where each token is a
vector e; € RY with all zeros except for a one on index i, we use embeddings,
where each token is mapped into a typically lower-dimensional space R¢, where
d < V. During training, the model learns to optimize an embedding matrix
W € R"*4, where each row W; represents the dense embedding vector for token
i. This is done via backpropagation, where the weight matrix is updated with
gradient descent to better fit the task at hand.

A key advantage embeddings hold over one-hot encodings is that they have
the ability to encode semantic relationships between tokens. For instance, in an
optimized embedding space, the vectors for the words "king" and "queen" would
be closer to each other when using a distance metric such as cosine similarity.
Given two n-dimensional vectors x and y, the cosine similarity can be computed
as

similarity(x,y) =

[l

where x - y represents the dot product between the two vectors.

An interesting phenomenon identified in commonly used word embedding
models such as Word2Vec [6] is the ability to solve analogies like “man is to king
as woman is to ..?" with vector addition and subtraction (see [7]).

Optimizable embeddings can be easily implemented using PyTorch, a Python ma-
chine learning library.

Suppose we have a vocabulary of only 5 words, and we want to create 5-
dimensional embeddings. Using our vocabulary size and vector dimension, we
can instantiate an embedding layer:

import torch

i
2

3 vocab_size = 5

4 embedding_dim = 5

6 embedding_layer = torch.nn.Embedding(vocab_size, embedding_dim)
7 print (embedding_layer.weight)

The code above returns the underlying weight matrix with initial random values
that are optimized during training:

2.2. EMBEDDINGS 8

- ldiliary
L.75 dH‘tlullhlJE_ ’
.| reipgn
1.5(Joval
1.25 Lok Srowh arifiess
. L
1.00% P
"l]ll('l'
0.750 /qm‘t'u
0.50 /
0.2 S
. kin £ Wi =Wy Wy
0.007 | f{

III%\&?;—M ———

0 oo 05 10 15 2.0

Figure 2.2: The relative locations of word embeddings in a 3-dimensional space
for the analogy "man is to king as woman is to ..?". We observe that the closest
embedding to the linear combination wx — wy; + wyy is that of queen. [7]

1 Parameter containing:
> tensor ([[1.2424, -0.5976, 1.1172, 0.2699, -0.3251],
3 [-0.8847, 0.4047, -0.3697, 0.6438, -0.0191],

4 [1.0972, 1.0399, -0.1295, -0.5018, -0.3435],

5 [-0.2168, 0.6721, 0.7324, 0.6196, 1.6820],

6 [-0.0380, 1.0718, 1.0660, -0.0657, 0.1021]],
requires_grad=True)

If we apply the embedding layer to a token ID of 2:

1 print (embedding_layer (torch.tensor ([2])))

we obtain the following vector:

1 tensor ([[1.0972, 1.0399, -0.1295, -0.5018, -0.3435]],
2 grad_fn=<EmbeddingBackward0 >)

We notice that the vector representing token ID 2 is identical to the 3rd row
of the weight matrix (indexing starts at 0), meaning that the embedding layer
represents a lookup table that retrieves rows using a token ID.

In practice, much larger embedding dimensions are used (for reference, the
GPT-3 model uses an embedding dimension of 12,288) to allow the model to
capture more detailed relationships between tokens.

2.2. EMBEDDINGS 9

2.2.2 Positional Encoding

The embedding layer introduced in the previous chapter always maps the same
token ID to the same embedding vector, regardless of the token’s positioning in
the text. Unlike RNN architectures that process text sequentially and inherently
capture positional information, the Transformer architecture processes an entire
input sequence at once and lacks the notion of position, an important information
for structuring coherent text. The authors of [1] proposed a simple technique
leveraging the sine and cosine functions to encode the absolute position of tokens
in a sequence:

y 0s
PE(pos,Zi) = sin (P 2i >
10000 “model (21)
0s
PE(pos,Zi—H) = COs (P 2i >
10000 model

where pos is the position of the token in the sequence, i is the dimension index
and d04e is the dimension of the model’s embedding space.

These equations leverage sine and cosine functions to generate wave-like patterns
that change based on the position in the sequence. By applying sine to even
indices and cosine to odd indices, they create a diverse set of features that encode
positional information effectively across sequences of varying lengths. The po-
sitional encoding vectors are set to the same dimension as the token embedding
vectors and their values are added to form a combined representation, which
carries both semantic and positional information.

An example implementation is given:

1 import torch

2 import torch.nn as nn
3 import numpy as np
4
5

5 class PositionalEncoding(nn.Module):

6 def __init__(self, max_len, d_model):

7 super (PositionalEncoding, self).__init__()

8

9 position = torch.arange (0, max_len) .unsqueeze (1) .float ()

10 div_term = torch.exp(torch.arange (0, d_model, 2).float ()
* -(np.log(10000.0) / d_model))

1

12 pe = torch.zeros(max_len, d_model)

13 pel:, 0::2] = torch.sin(position * div_term)

14 pel:, 1::2] = torch.cos(position * div_term)

15

16 self.register_buffer(’pe’, pe)

17

18 def forward(self, x):

19 batch_size, seq_len, _ = x.size()

20 pe = self.pel[:seq_len].unsqueeze (0)

2.2. EMBEDDINGS 10

21 return x + pe

where the inputs to the forward pass are tensors of shape (batch_size,
maximum_input_length, model_dimensionality).

Given a random tensor of shape (16, 5000, 256), we can print out the first 10 posi-
tions of the first batch item:

1 max_len = 5000

2 d_model = 256

3 pos_enc = PositionalEncoding(max_len, d_model)
4

5 tokens = torch.randn(16, max_len, d_model)

6 encoded_tokens = pos_enc(tokens)

7

8 print (encoded_tokens [0, :10])

The above code prints out the following output:

1 tensor ([[0.3741, 1.4068, -0.1293, ..., 0.9279, 0.1216,
0.6628] ,

2 [2.0897, 0.2798, 0.4041, .ss5 1258326, 0.6097,
0.3615] ,

3 [0.6906, -0.4875, -0.2741, ..., 0.0304, -0.2491,
-1.6278],

4 v 5% 5

5 [1.1701, 1.5050, -0.7701, ..., -0.3111, -0.9990,
1.0434],

6 [1.55691, -0.7341, 2.7129, ..., 0.9223, 0.9805,
-0.0644],

7 [0.2120, -1.6400, 1.2758, ..., -1.4612, 1.0807,
0.7322]11)

OpenAl's GPT models use positional embeddings that are optimized during
model training rather than being predefined by fixed formulas, like 2.1. This em-
bedding layer, along with the weight matrix can be initialized analogously to the
token embedding layer introduced in the previous subchapter.

3 | The Transformer Block

The fundamental building block of GPT models is the Transformer decoder, which
accepts the embedded tokens as input and relies on the self-attention mechanism
and feed forward networks to capture complex dependencies in the data. This
block is then repeated an arbitrary amount of times (for reference, GPT-3 uses
96 stacked Transformer layers), followed by additional post processing steps to
generate the final output.

3.1 Self-Attention

Self-attention is a mechanism that allows each position in the input sequence to
focus on every other position within the same sequence while generating its rep-
resentation. The goal of the mechanism is to compute a context vector for each
input token that aggregates the information from all other input tokens, captur-
ing relationships between them.

3.1.1 Scaled Dot-Product Attention with Casual Masking and
Dropout

As the first step of the self-attention mechanism, we compute query, key and value
vectors for all input tokens. We do so by initializing trainable weight matrices Wy,
Wy and Wy, and performing matrix multiplication between every input and ev-
ery weight matrix to project the vectors into a lower-dimensional space. Doing so,
we get a query matrix Q, a key matrix K and a value matrix V. Attention scores
are context-specific values that are the result of a dot-product between the query
(Q) and the value (K) matrix. Attention scores are then scaled by the square
root of the dimension of the keys (1/dy) to avoid small gradients during training
(when scaling up the embedding dimension large dot-products result in small
gradients during backpropagation). The scaled scores are then passed through a
softmax function to obtain normalized attention weights, which determine how
much emphasis should be placed on each value vector when combining informa-
tion for each query. We multiply these weights with the value matrix (V) to get
the context vectors. A compact formula for scaled dot-product attention is given

[1]:

.1

3.1. SELF-ATTENTION 12

Q=XWg, K=XWg, V=XWy,

T 3.1
Attention(Q, K, V) = softmax (QL) %4 (3d)
Vi

Two important techniques used in GPT models to improve the attention mech-
anism are casual masking and dropout. In standard self-attention, each query
attends to every key, including future tokens, which is avoided since predicting
the next word should only depend on the current and previous words, not future
ones. To prevent this, a mask is applied to the attention weights matrix, making
sure that positions corresponding to future tokens are ignored. This is achieved
by masking each of the elements above the diagonal with —co before applying
the softmax function. The softmax function treats —oo values as zero probability,
effectively making the attention weights for future tokens zero.

. € g . & g
2 28§ ¢ § 3 3 8 § ¢ ¢
Your [0.19|[0.16[0.16|0.15{/0.17 [|0.15 Your | 1.0 ‘,\z:::‘::,:fm
journey |0.20{/0.16[0.16[0.14|[0.16|0.14 journey |0.55(0.44 ::'I'(g:e “Yow™
starts |0.20/[0.16([0.16[0.14[0.16|0.14 starts [0.38|[0.30(|0.31
with |0.18/(0.16(|0.16|/0.15|/0.16//0.15 - with [0.27/(0.24(/0.24|/0.23
one |0.18/|0.16(/0.16{(0.15||0.16{/0.15 one |0.21(/0.19(/0.19((0.18/|0.19
step |019]/0.160.16/0.15 0.16]0.15 step |0.19/0.16/(0.16/(0.15/[0.16{[0.15
)

Attention weight for input tokens
corresponding to “step” and “Your”

Figure 3.1: Attention weights for the sequence "Your journey starts with one step"
before and after casual masking. [9]

Dropout is a regularization technique used to prevent overfitting used in multiple
parts of the GPT architecture. Dropout randomly sets a subset of weights during
training to zero, preventing over-reliance on a specific set of weights. It’s only
used during training and is disabled in inference. In terms of the attention mech-
anism, dropout is used after computing the masked attention weights. It’s usually
applied with a probability p, meaning that each attention weight has a p-chance
of being zeroed out during training.

3.1. SELF-ATTENTION 13

P)
£ £ 8
5 £ o
e 3 53 3 5§ %
Your | 1.0 ||

journey |0.55 0.44"

starts [0.38 0.30"0.31

with |0.27 0.24"0.24 0.23

one (0.21 0.19"0.19 0.18

step (0,19 0.16"0.18 0.15

}L

Attention weight for input Dropout mask
tokens i with random
corresponding to e
“step” and “Your” positions
dropped
Your | 1.0
Bt =
sars [038]030
with . The dropout mask
applied to the
one . attention scores will
Zero out certain

step -|0.1B||0.16"0.15||0.16 altuntion soores

Figure 3.2: Attention weights for the sequence "Your journey starts with one step"
before and after casual masking and dropout. [9]

This mechanism can be implemented in a compact Python class, using PyTorch’s
nn.Module:

1 class CasualAttention (nn.Module):

2 def __init__(self, dim_in, dim_out, context_size, dropout,
qkv_bias=False):

3 super () . __init__()

4 self.dim_in = dim_in

5 self.dim_out = dim_out

6 self .W_q = nn.Linear(dim_in, dim_out, bias=qkv_bias)

7 self .W_k = nn.Linear(dim_in, dim_out, bias=qkv_bias)

8 self .W_v = nn.Linear(dim_in, dim_out, bias=qkv_bias)

9 self.dropout = nn.Dropout (dropout)

10 # we create a mask in the constructor so that we don’t
have to create it every time we call the forward method

1 # we use register_buffer because it’s a parameter that

we don’t want to update during training but we can still save
it in the model state dict
12 # it also automatically moves the tensor to the device
that the model is on so we don’t have to do it manually

3.1. SELF-ATTENTION 14

13 self.register_buffer ("mask", torch.triu(torch.ones(
context_size, context_size), diagonal=1))

14

15 def forward(self, x):

16 _, num_tokens, _ = x.shape # the first dimension is the

batch size, the second is the number of tokens in the
sequence, the third is the embedding dimension

17 q = self.W_q(x)

18 k = self.W_k(x)

19 v = self.W_v(x)

20

21 attention_scores = torch.matmul(q, k.transpose(l, 2))

2 # masked_fill is conceptually the same as
attention_scores[self.mask == 1] = float("-inf")

23 attention_scores.masked_fill_(self.mask[:num_tokens,
num_tokens] == 1, -torch.inf) # we slice the mask to match
the number of tokens in the input

2 # adding an underscore to a function in pytorch means
that the function will modify the tensor in place

25 attention_weights = torch.softmax(attention_scores / k.
shape [-1]*%0.5, dim=-1)

26 attention_weights = self.dropout(attention_weights)

27

28 context_vectors = torch.matmul (attention_weights, v)

29 return context_vectors

3.1.2 Multi-Head Attention

In multi-head attention, the input embeddings projected into multiple lower-
dimensional spaces, using different weight matrices for each head:

Qu=XWp}, Ky =XWy, Vi, =XW, foreach head h (3.2)

For each head, scaled dot-product attention is computed separately. Each head
computes the attention scores between the projected queries and keys, then uses
these scores to weigh the values:

. QK
Attentiony, (Qy, Ky, Vj,) = softmax Vi (3.3)

Vi
Since each head has different attention scores, they capture different types of re-

lationships between tokens. Once attention has been computed for each head, the
outputs from all heads are concatenated:

MultiHead (Q, K, V) = Concat(head;, head,, . .., head;)Wp (3.4)

where Wy is a learned weight matrix that transforms the concatenated output
back to the original dimension of the input sequence.

3.1. SELF-ATTENTION 15

Multi-head attention can also be implemented in a compact class:

1 class MultiHeadAttention (nn.Module):

2

O ® N o Ul W

10

11

12

13

14

15

17

18
19

20

21

22

23

24

25

26

27

28

29
30

31

32

33

34
35

36
37

def __init__(self, dim_in, dim_out, context_size, dropout,
num_heads, qkv_bias=False):
super () . __init__()
self.dim_in = dim_in
self.dim_out = dim_out
self .num_heads = num_heads
we split the output dimension by the number of heads
self.head_dim = dim_out // num_heads
self .W_q = nn.Linear(dim_in, dim_out, bias=qkv_bias)
self .W_k = nn.Linear (dim_in, dim_out, bias=qkv_bias)
self .W_v = nn.Linear (dim_in, dim_out, bias=qkv_bias)
self .W_o = nn.Linear (dim_out, dim_out)
self .dropout = nn.Dropout(dropout)
self.register_buffer ("mask", torch.triu(torch.ones(

context_size, context_size), diagonal=1))

def forward(self, x):

the context vectors will be of dimension (num_heads *
dim_out)

b, num_tokens, _ = x.shape

q = self.W_q(x) # matrix multiplication of batched data,
now the q tensor is of shape (b, num_tokens, dim_out)

k = self.W_k(x)

v = self.W_v(x)

we permute our tensors so that it’s now (batch_size,
num_heads, num_tokens, head_dim)

that makes it more intuitive and easier to process
each head independently

for example, we have 1 batch, 2 heads each processing
3 tokens with a head dimension of 4

q = q.view(b, num_tokens, self.num_heads, self.head_dim)
.permute (0, 2, 1, 3)

k = k.view(b, num_tokens, self.num_heads, self.head_dim)
.permute (0, 2, 1, 3)

v = v.view(b, num_tokens, self.num_heads, self.head_dim)

.permute (0, 2, 1, 3)

we want to do dot product between the queries and keys
for each head

the matrix multiplication is carried out between the
last two dimensions of the tensors and then repeated for all
the heads

attention_scores = torch.matmul(q, k.permute(0, 1, 3, 2)
)

attention_scores.masked_fill_(self.mask[:num_tokens,
num_tokens] == 1, -torch.inf)

attention_weights = torch.softmax(attention_scores / k.
shape [-1]*%0.5, dim=-1)
attention_weights = self.dropout(attention_weights)

3.2. LAYER NORMALIZATION 16

38 # we multiply the attention weights with the values and
then concatenate the heads

39 context_vectors = torch.matmul (attention_weights, v).
transpose (1, 2).reshape(b, num_tokens, self.dim_out)

40 # we pass the concatenated heads through a linear layer
to get the final context vectors

41 context_vectors = self.W_o(context_vectors)

2

43 return context_vectors

Scaled Dot-Product Attention Multi-Head Attention

Mathul

Concat

g
=
8

Scaled Dot-Product J& N

Attention .
% L1 11— |
[Linear il[Linear [Linear
Y Y r’
Q K v
" K Q

Figure 3.3: Scaled Dot-Product and Multi-Head Attention visualization from the
original Transformer paper. [1]

3.2 Layer Normalization

In deep neural networks, internal covariate shift [10] occurs when the distribution
of inputs to a neural network layer changes during training due to ongoing up-
dates in the parameters of previous layers. This forces each layer to adjust to the
varying input distributions, potentially making the training process slower and

more complex. Let a(!) be the activation in layer / and W(!) be the weight parame-
oL _ L aa¥

ters of layer I. As the distribution of a(!) changes, the gradient sl = 5,0~ S0
can become unstable which can lead to vanishing or exploding gradients. Layer
normalization [11] adjusts the activations of a layer to have a mean of 0 and a
variance of 1, ensuring reliable training. Let x = (x, ..., xy) be the vector repre-
sentation of an input of size H to the normalization layer. Layer normalization
will re-center the input as:

3.3. FULLY-CONNECTED LAYER 17

o
H
=5 Z Xi (3.5)

~
Il
=

il H
— — P 2
o = H;(xz .u)

where h is the output of the normalization layer, 4 and ¢ are the mean and
standard deviation of the input, respectively. The parameters v and B are
trainable parameters that are adjusted during training to improve performance.
In practice, we can also add a small fixed parameter € to the variance to prevent
division by zero.

The LayerNorm class can be implemented as follows:

1 class LayerNorm(nn.Module):

2
3
4

def __init__(self, emb_dim, eps=1le-6):
super () . __init__()
the model can learn to scale or shift the normalized
values by using the gamma and beta parameters if it needs to

(if it improves the performance)

self.gamma = nn.Parameter (torch.ones(emb_dim))
self.beta = nn.Parameter (torch.zeros(emb_dim))
self.eps = eps # small constant added to the variance to

prevent division by zero

def forward(self, x):

mean = x.mean(dim=-1, keepdim=True)
var = x.var(dim=-1, keepdim=True)
normalized = (x - mean) / torch.sqrt(var + self.eps)

return self.gamma * normalized + self.beta

3.3 Fully-Connected Layer

A fully connected feed-forward network is the last component of the Transformer
decoder block. It consists of two layers, one that projects the inputs into a larger
space and one that shrinks the outputs to the original input dimensions. This
allows for exploration of a bigger space, providing the network with greater ca-
pacity to capture complex representations. It also introduces non-linearity by ap-
plying a non-linear activation function in between the projections.

The most commonly used activation function is the Rectified Linear Unit (ReLU):

ReLU(x) = max(0, x)

3.3. FULLY-CONNECTED LAYER 18

Another commonly used activation function is the Gaussian Error Linear Unit
(GELU), which has been shown to slightly improve performance in comparison
to ReLU [12].

1 X
GELU(x) =x-P(X <x)=x-= [14erf| —
& Fssj=tz [(ﬁ)}
where erf(x) is the Gaussian error function. GELU can also be approximated more
efficiently by the following formula:

GELU(x) ~ 0.5x (1 + tanh (\/% (x - 0.044715x3)))

Unlike ReLU, which introduces sharp thresholds by zeroing out negative values,
GELU applies a smooth, continuous curve which mitigates the "dead neuron"
problem (for example, a large gradient flowing through a ReLU neuron could
cause a weight update such that the gradient flowing through that neuron will
forever be zero from that point on).

RelU Activation Function GELU Activation Function

5] — RelU 5] — GELU

ReLU(x)
GELU(x)

-4 -2 0 2 4 -4 -2 0 2 4
X X

Figure 3.4: The output graph of ReLU and GELU activation functions.

The fully connected layer can be implemented as follows:

1 class FullyConnected(nn.Module):

2 def __init__(self, embedding_dim):

3 super () . __init__()

4 self.layers = nn.Sequential(

5 #projecting to a 4x larger space and back

6 nn.Linear (embedding_dim, 4 * embedding_dim),
7 nn.GELU(),

8 nn.Linear (4 * embedding_dim, embedding_dim)
9)

10

1 def forward(self, x):

12 return self.layers(x)

3.3. FULLY-CONNECTED LAYER 19

To improve our model, we add dropout layers after the attention and the
feed-forward layers. Furthermore, we add residual connections [1]. A residual
connection allows the input to a layer to be added directly to the output of a later
layer. This is done to help mitigate the vanishing gradient problem, as it allows
gradients to bypass intermediate layers that cause their vanishing.

After passing through the Transformer blocks, outputs are again normal-
ized with another LayerNorm layer. Finally, outputs are projected into the
vocabulary space of the tokenizer using a fully-connected layer and softmax is
applied to represent the next token probabilities.

The full GPT architecture can be visualized below.

Output Block Output

[Softtmax] (1 \
[Fully-connected] [ST]
[LayerNorm] [Fully-connected]
[PTBIock#L | (Covertorm)

) ' z
[GPTBlock #1] T
[Dropout] h:ltj'l:;\':;and

i Positional L Module

Encoding

[Emberding] \ [LayerNorm] /

Input Block Input

Figure 3.5: The full GPT model architecture with L repeating Transformer decoder
blocks. [8]

4 | Pre-Training

Pre-training involves training the model on a large corpus of raw text data. The
goal is to develop a versatile language model that can generate coherent and con-
textually relevant text. The model is trained to minimize the cross entropy loss
function:

H(p,q) = =) _p(x)logg(x)

where p is the actual probability distribution (in the context of GPTs, the true
probability of a word being the next in a sequence), g is the predicted probability
distribution, and the sum is over all possible outcomes. The minimization is done
using algorithms based on stochastic gradient descent (SGD), such as Adam.

4.1 Adam Optimizer

Adam [13] is an adaptive learning rate algorithm designed to help deep neural
networks achieve convergence quickly. In the standard gradient descent algo-
rithm:

0« 0—aVeLl(0)

where 6 represents the parameters of the model, « is the learning rate and Vo L(6)
is the gradient of the loss function with respect to 6,

the learning rate is fixed. The inherent problem with having a fixed learning rate
is that a lower initial learning rate would sometimes lead to very slow conver-
gence, while a very high rate at the start might miss the minima. Adam solves this
problem by adapting the learning rate for each parameter separately, combining
momentum-based SGD with RMSProp (Root Mean Square Propagation).

For each time iteration t, Adam computes the gradient g;. Then, it updates
the first-moment vector m, responsible for storing the moving average of the
gradients:

my = ﬁlmt_l + (1 — ﬁl)VQ,C(Q)

where m; is the first-moment vector at time t and p; is the decay rate for the first
moment estimate.

Similarly, the second-moment estimate vector v, which stores squared gradients,
is updated:

pdl

4.2. TRAINING LOOP 22

vt = Povr—1+ (1 — B2) (Vo L(6))?

where v; is the second-moment vector at time t and f; is the decay rate for the
second moment estimate.

Since m and v are initially set to 0 (which leads to a bias towards zero), a correction
of bias in the moments is performed:

s i
t— T 57 t— — 5%
1-p’ 1—B5

Combining the above formulas, the overall parameter update rule in Adam is:

Déi’?lt
Vo +e

where € is added to prevent division by zero and maintain numerical stability.

0 < 01 —

4.2 Training Loop

Assuming a well implemented DataLoader that samples data using a sliding win-
dow technique, model training can be implemented as a simple PyTorch training
loop:

1 def train_model (model, train_loader, optimizer, num_epochs,
device):
for epoch in range(num_epochs):
model.train ()
for input_batch, target_batch in train_loader:
global_step += 1
optimizer.zero_grad()
input_batch, target_batch = input_batch.to(device),
target_batch.to(device)

N o G ke W N

8 logits = model (input_batch)

9 loss = torch.nn.functional.cross_entropy(logits.
flatten(0, 1), target_batch.flatten())

10 loss.backward ()

11 optimizer.step ()

in which the model optimizes parameters considering all of the training data
for multiple epochs. PyTorch also supports model saving, which is essential for
preserving the trained model and resuming training or performing inference
atalater time. This is often done whenever the loss on the validation set decreases.

Training can further be optimized by implementing different heuristics such as
learning rate warmup and cosine decay [14].

5 | Fine-Tuning

Fine-tuning represents the process of adjusting parameters of the pre-trained
model to better suit a specific task. It can be viewed as further optimizing the
model’s weights starting from a pre-trained state rather than random initial-
ization. Each fine-tuning step updates the pre-trained weights based on the
new task’s loss (5.1), gradually adapting the model to the requirements of
the fine-tuning task without losing any general knowledge obtained during
pre-training. This is done to allow a model to perform a task different from just
next-word prediction, the task it was pre-trained on, and is called transfer learning.

The most used and straightforward fine-tuning approach is supervised fine-
tuning, where the model is trained on a labeled dataset fitting a specific task
like classification or question answering. Fine-tuning for question answering
enhances a model’s capability to understand instructions and generate outputs
based on them. On the other hand, classification fine-tuning is used in projects
requiring accurate data categorization into predetermined groups, such as senti-
ment analysis or spam detection. Although fine-tuning for question answering
is more versatile, it typically requires larger datasets and greater computational
resources than classification fine-tuning.

Outputs
Pretrained Weight

weights update
W) (Aw)

\ /

Inputs

Figure 5.1: Fine tuning the model is nothing more than adding new weight up-
dates to pre-trained weights. [15]

23

5.1. PARAMETER EFFICIENT FINE-TUNING 24

5.1 Parameter Efficient Fine-Tuning

In general, fine-tuning large language models requires substantial computational
resources, making it both memory-demanding and time-consuming. To mitigate
these challenges, researchers ([16], [17], [18]) have introduced Parameter Effi-
cient Fine-Tuning (PEFT) methods, which optimize the process by updating only
a small subset of model parameters.

5.1.1 LoRA Fine-Tuning

LoRA (Low-Rank Adaptation) [16] fine-tuning is a technique designed to reduce
the number of trainable weights by learning low-rank updates to the pre-trained
model’s weight matrices, rather than fine-tuning all parameters.

We assume that the generalized weight matrix of a pre-trained model is
Wy € Rk, where d is the input dimension and k is the output dimension.
Fine-tuning without LoRA would involve updating all elements of this matrix.
Instead of directly updating Wy with a weight matrix AW, LoRA learns to
approximate AW by decomposing it into two lower-rank matrices A € R**" and
B € R"™*¥, where r < d and r < k. During training, the pre-trained weights are
frozen and only the parameters in matrices A and B are learned. This means that
the total number of parameters learned during training is much smaller than
original, which makes LoRA a highly parameter-efficient fine-tuning method.

Outputs

Pretrained

E—

weights r

W | g
/

\

Inputs x

Figure 5.2: LoRA fine tuning splits the weight update matrix into two matrices of
lower rank. [15]

Another important aspect of LoRA fine-tuning is that it doesn’t lower the model’s
accuracy [16]. It can also be enhanced with QLoRA [17], a technique that main-
tains frozen model parameters in 4-bit quantized precision, further reducing
memory usage.

5.1. PARAMETER EFFICIENT FINE-TUNING 25

5.1.2 Prompt Tuning

Prompt tuning [18] is a method used to fine-tune models by learning task-specific
prompts, rather than modifying the model’s original weights. The weights of
the pre-trained model remain frozen and a trainable tensor is prepended to the
model’s input embeddings, creating a soft prompt to condition frozen language
models to perform specific downstream tasks. These soft prompts are learned
through backpropagation and can be further fine-tuned.

A shortcoming of model tuning is that it requires making a task-specific
copy of the entire pre-trained model for each downstream task and doesn’t
support mixed-task inference. Prompt tuning optimizes this, only requiring
the storage of a small task-specific prompt for each task, enabling mixed-task
inference using the original pre-trained model.

Pre-trained 1 ;
Model Tuning Model y Prompt Tuning
L (11B params) VL
ai e ™ : Mixed-task
TaskA 22 | TaskAModel | , Batch
Batch (11B params) I AT al
S 7 C | ci Pre-trained
= p N g B | b1 Model
Task B —] | TaskBModel | 1 Lot (11B params)
Batch (11B params) |
L /1 Task Prompts
= e N | (20K params each)
Task C 2 Task C Model | !
Batch (11B params) | |
" w 1

Figure 5.3: Prompt tuning supports mixed-task inference. [18]

With a T5 “XXL” model, each copy of the tuned model requires 11 billion
parameters. By contrast, the tuned prompts in [18] would only require 20,480
parameters per task.

On the SuperGLUE benchmark, prompt-tuning task performance rivals that
of traditional model tuning, with the gap vanishing as model size increases.

References

[1] A. Vaswani, N. SHAZEER, N. PARMAR, J. Uszkorert, L. Jones, A. N. Gomez, T..
Kaiser, I. PoLosukHiN, Attention is all you need, arXiv:1706.03762 (2017)

[2] A. Raprorp, K. NarasivHAN, T. Sartivans, . Sutskever, Improving Language
Understanding by Generative Pre-Training, OpenAl (2018)

[3] T. B. BRowN ET AL., Language Models are Few-Shot Learners, arXiv:2005.14165
(2020)

[4] P. Gagg, A New Algorithm for Data Compression, The C Users Journal (1994)

[5] HuggingFace: Byte-Pair Encoding tokenization,
https://huggingface.co/learn/nlp-course/en/chapter6/5

[6] T. Mixorov, K. Cren, G. Corrapo, J. DeaN, Efficient Estimation of Word Repre-
sentations in Vector Space, arXiv:1301.3781 (2013)

[7] C. Arcen, T. HospepaLes, Analogies Explained: Towards Understanding Word
Embeddings, arXiv:1301.3781 (2019)

[8] A Mathematical Investigation of Hallucination and Creativity in GPT Models - Sci-
entific Figure on ResearchGate,
https://www.researchgate.net/figure/
Conceptual-architecture-of-a-GPT-model_figl 370853178

[9] S. RascHka, Build a Large Language Model (From Scratch), Manning Publica-
tions (2024)

[10] S. lorre, C. SzeGepy, Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift, arXiv:1502.03167 (2015)

[11] J. Ba, J. Kiros, G. HinTON, Layer Normalization, arXiv:1607.06450 (2016)

[12] D. Henprycks, K. Gmmper, Gaussian Error Linear Units (GELUs),
arXiv:1606.08415 (2016)

[13] D. KiNcMma, J. Ba, Adam: A Method for Stochastic Optimization, arXiv:1412.6980
(2014)

[14] 1. Losucuiov, F. Hurter, SGDR: Stochastic Gradient Descent with Warm
Restarts, arXiv:1608.03983 (2016)

27

REFERENCES 28

[15] V. PARTHASARATHY, A. ZAFAR, A. KHAN, A. SHaHID, The Ultimate Guide to Fine-
Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies,
Research, Best Practices, Applied Research Challenges and Opportunities,
https://arxiv.org/html/2408.13296v1 (2024)

[16] E. Hu, Y. SueN, P. WaLLss, Z. AvLLen-ZHy, Y. Li, S. Wang, L. Wang, W. CHeN,
LoRA: Low-Rank Adaptation of Large Language Models, arXiv:2106.09685 (2021)

[17] T. Derrmers, A. PagNoni, A. Horrzman, L. Zertiemover, TQLoRA: Efficient
Finetuning of Quantized LLMs, arXiv:2305.14314 (2023)

[18] B. Lester, R. AL-Rrou, N. Constant, The Power of Scale for Parameter-Efficient
Prompt Tuning, arXiv:2104.08691 (2021)

Generative Pre-Trained Transformers:
Architecture, Pre-Training and Fine-
Tuning

Summary

With an emphasis on GPT models, this thesis explores the design, training,
and optimization of large language models (LLMs). It starts by examining
preprocessing approaches for text data, such as tokenization techniques (word-
based, character-based, Byte-Pair Encoding) and embeddings. Subsequently, the
Transformer block was presented, highlighting the mechanisms that constitute
the basis of the model: self-attention and fully-connected layers.

The processes involved in optimizing model parameters were highlighted
by the examination of the pre-training phase followed by fine-tuning, which

demonstrated how models can be adapted efficiently to new tasks, particularly
when using parameter-efficient techniques like LoRA and prompt tuning.

Keywords

GPT model, tokenization, embeddings, transformer architecture, self-attention,
pre-training, Adam optimizer, fine-tuning, LoRA fine-tuning, prompt tuning

29

About the author

[am currently an undergraduate student in the Mathematics and Computer Sci-
ence program at Josip Juraj Strossmayer University of Osijek, School of Applied
Mathematics and Informatics. Throughout my years of study, I notably served
as a teaching assistant for courses Introduction to Computer Science, Object Ori-
ented Programming and Machine Learning. I've received commendations issued
by the School of Applied Mathematics and Informatics for Success in Study, Ex-
tracurricular Activities and the Dean’s Award. In 2023, I did practical training at
Mono d.o.o where I specialized in creating Al solutions.

<t

