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On consecutive palindromes

Summary

In this paper, we will try to characterize consecutive palindromes - positive integers
simultaneously palindromic in multiple consecutive number bases. We search for solutions
in the cases of two and three number bases and observe the fact that solutions likely do not
exist in the case of four or more number bases. In practice, this requires solving systems of
corresponding linear Diophantine equations.

This was motivated by the question �Can a positive integer be palindromic in more than
three consecutive number bases?�. The question does not appear to have an obvious approach
and remains open. The analysis of consecutive palindromes in three number bases suggests
that the answer to the question is likely negative.

Key words

Palindromic numbers, number bases, linear Diophantine equations, linear Diophantine
systems



O uzastopnim palindromima

Saºetak

U ovom radu poku²at ¢emo karakterizirati uzastopne palindrome - brojeve koji su istovre-
meno palindromi£ni u vi²estruko uzastopnih brojevnih baza. Traºimo rje²enja u slu£ajevima
dvije i tri brojevne baze, te promatramo £injenicu kako rje²enja vjerojatno ne postoje u
slu£aju £etiri ili vi²e brojevnih baza. U praksi, ovo zahtjeva rje²avanje sustava odgovara-
ju¢ih linearnih Diofantskih jednadºbi.

Ovaj rad je motiviralo pitanje �Moºe li broj biti palindromi£an u vi²e od tri uzastopne
brojevne baze?�. �ini se kako pitanje nema o£it pristup te ostaje otvoreno. Analiza uzastop-
nih palindroma u tri brojevne baze upu¢uje nas na to da bi odgovor na postavljeno pitanje
bio negativan.

Klju£ne rije£i

Palindromi£ni brojevi, brojevne baze, linearne Diofantske jednadºbe, linearni Diofantski
sustavi
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1 Introduction

At the beginning of this chapter, we will introduce the idea of consecutive palindromes and
present a few known problems related to palindromes. The key de�nitions will be laid out in
the �rst section of the introduction chapter. In the second section of the introduction chapter,
we mention a related problem to consecutive palindromes, the simultaneous palindromes.
Beyond that, we start characterizing consecutive palindromes.

We say that a positive integer is palindromic (is a palindrome) in an integer number base
b ≥ 2, if it remains the same when its digits are reversed in that number base. Notice that
all positive integers less than some number base b, have a one-digit representation in that
number base, and hence are trivially palindromic in that number base. Based on this, we
will exclude the one-digit numbers from the de�nition of consecutive palindromes.

A consecutive palindrome is a positive integer that is simultaneously palindromic in at
least two consecutive number bases, having at least two digits in those number bases. For
example, the number 10 is a consecutive palindrome, since it is palindromic in consecutive
number bases 3 and 4, i.e.,

10 = 1 · 32 + 0 · 31 + 1 · 30 = 2 · 41 + 2 · 40,

so its base three digits (1, 0, 1) and base four digits (2, 2) are the same when their order is
reversed. The number 10 is also the smallest consecutive palindrome.

The results in this paper are founded on observations that we had previously discussed on
Mathematics Stack Exchange (see [16, 17, 19]) and Math Over�ow (see [18]), under username
Vepir. Before we start, we would like to acknowledge a few unsolved problems related to
palindromes, which initially sparked our interest in this topic. These were mainly observed
in the decimal number base only, and are open for research.

• The problem of �nding perfect powers nk, n > 1, k > 1 that are palindromic was
examined by Simmons in 1970 (see [15]). He obtains some results for k = 2, 3, 4, such
as that there are in�nitely many palindromic squares. He also conjectures that no
solutions exist for k > 4.

• In the same paper, Simmons observes that the only known non-palindromic number
whose cube is a palindrome is 2201 (see [15, Question 2]). He veri�es this up to 2.8·1014.
This was later discussed in a book by Gardner in 1982 (see [7]), and later resurfaced
on Math Stack Exchange in 2013 (see [13]). A similar claim does not necessarily hold
in other number bases.

• Lychrel numbers, de�ned as positive integers that cannot form a palindrome through
the iterative process of repeatedly reversing and adding their digits, are unsolved in the
decimal number base. Candidates for such numbers are being collected in The On-Line
Encyclopedia of Integer Sequences (OEIS), under the sequence A023108. However,
when observing the Lychrel process in other number bases such as powers of two, the
Lychrel numbers were successfully constructed (see [12]).
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1.1 Number representations and palindromes

Regarding the notation used, we will remain in the realm of integers:

• N := {1, 2, 3, . . . }, N0 := {0, 1, 2, 3, . . . }, Z := {. . . ,−2,−1, 0, 1, 2, . . . }.

• Let n ≤ m, (n,m) := {n+ 1, n+ 2, . . . ,m− 1} ⊂ Z, [n,m] := {n} ∪ (n,m) ∪ {m}, and
similarly [n,m) := {n} ∪ (n,m) and (n,m] := (n,m) ∪ {m}.

In this section, we present the key de�nitions and propositions for the number base
representations and palindromes.

De�nition 1.1. Let n, b ∈ N and b ≥ 2. If there exist integers d ∈ N, ai ∈ [0, b), a1 6= 0, i ∈
[1, d] such that

n = a1b
d−1 + a2b

d−2 + · · ·+ ad−1b+ ad =
d∑

i=1

aib
d−i,

then we say that n has a d digit number representation in number base b, where ai are called

the digits of the number n in base b. a1 is the leading digit, and ad the unit digit. We write

n = (a1, a2, . . . , ad)b,

and call this the natural representation of number n in the number base b. We will refer to

this as the normal form of the number n in base b.

It can be shown that a normal form of some n in some number base b is unique. This
will follow from the uniqueness of remainders in the division theorem, also known as the
Euclidean division.

Lemma 1.2 (see [14, Theorem 5. The Division Algorithm]). Let a, b ∈ Z, where b > 0.

Then there exist unique integers q, r such that a = bq + r, where r ∈ [0, b).

Proof can be found in books or courses that cover introductory number theory (see [14]).

Proposition 1.3 (see [14, Theorem 6.]). If n, b ∈ N, b ≥ 2, then the normal form of n in

the number base b is unique.

Proof:

We write the d digit normal form of some n in some base b:

n = ad + ad−1b+ ad−2b
2 · · ·+ a1b

d−1 = ad + qb,

where q = ad−1b
0 + ad−2b

1 + · · ·+ a1b
d−2. We know that ai ∈ [0, b). From Lemma 1.2, ad is

unique as it represents the remainder of division of n by b. Now, inductively observe that

q = ad−1 + ad−2b+ ad−3b
2 · · ·+ a1b

d−2 = ad−1 + qd−1b

qd−1 = ad−2 + ad−3b+ ad−4b
2 · · ·+ a1b

d−3 = ad−2 + qd−2b

...

q3 = a2 + a1b = a2 + q2b.

Applying Lemma 1.2 we conclude that the remaining digits ad−1, . . . , a2 are uniquely
determined as remainders of division by b. In the last step, a1 is the unique quotient.
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Notice that the proof of Proposition 1.3 gives us a way to write number n in base b.

De�nition 1.4. Let b ≥ 2. We say that a positive integer n ∈ N is palindromic in the

number base b, and call it a palindrome in the number base b if

ai = ad−i+1, ∀i ∈ [1, d],

where ai are digits in the normal form of n in base b.

We say that n is nontrivially palindromic if b ≤ n− 2. Otherwise, if n− 1 ≤ b, then we

say that n is trivially palindromic.

We say that n is strictly nonpalindromic if it is not a palindrome in any of the nontrivial

number bases 2 ≤ b ≤ n− 2.

Trivial palindromes are, well, trivial. Notice that if b = n − 1 and n ≥ 3, we have
a palindrome: n = 1 · (n − 1) + 1 = (1, 1)n−1. If n = b we cannot have a palindrome:
n = 1 · n+ 0 = (1, 0)n. Finally, if n < b, then n = (n)b is a one-digit palindrome.

Proposition 1.5 (see [22, Properties]). If n > 6 is strictly nonpalindromic, then n is a

prime number.

Proof:

We will show that non-prime number n > 6 cannot be strictly nonpalindromic. If such n is
not a prime number, then it must be composite and we can factorize it like n = pq. Let p
be the smallest factor of n. Observe two cases:

• Assume that p 6= q.

Because factors are multiples of primes, which are all odd except 2, we see that q−p > 1.
The only time when q− p ∈ {0, 1} is possible, is if we have factors 2, 3 or 2, 2 or p = q,
but this is impossible since n > 6 and p 6= q. That is, we have p < q − 1.

This means that n is palindromic in base q − 1, since:

n = pq = p(q − 1) + p = (p, p)q−1, p < q − 1.

• Otherwise, if p = q, then n = p2 is a square. If p > 3, then we have 2 < p− 1, and n
is palindromic in number base p− 1, since

n = p2 = (p− 1)2 + 2(p− 1) + 1 = (1, 2, 1)p−1, 2 < p− 1.

And specially, if p = 3, we have 9 = 1 · 23 + 1 = (1, 0, 0, 1)2, i.e., a binary palindrome.
If p = 2, then n = 4, which contradicts with n > 6.

We have shown that composite number n > 6 has at least one nontrivial palindromic rep-
resentation. This implies that only prime numbers and {1, 4, 6} can be strictly nonpalin-
dromic.
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The converse of Proposition 1.5 does not hold. That is, if n > 6 is a prime, then n

is not necessarily strictly nonpalindromic. For example, 13 is a prime, but is not strictly
nonpalindromic, since 13 = (1, 1, 1)3 is a palindrome in base three.

Corollary 1.6. If n > 6 is composite, then n has at least one nontrivial palindromic repre-

sentation in some number base 2 ≤ b ≤ n− 2.

The corollary follows from the proof of Proposition 1.5.

1.2 Simultaneous and consecutive palindromes

For the convenience of the reader, in this section we state de�nitions concerning simul-
taneous and consecutive palindromes.

Firstly, we brie�y introduce simultaneous palindromes and related results.

De�nition 1.7. A positive integer n is a simultaneous palindrome in number bases b1, b2, . . .

if it is simultaneously palindromic in those number bases.

For simultaneous palindromes, and palindromic additivity, research has been done in
recent past. For example,

• In 2009, it was shown that there are exactly 203 numbers that are simultaneously
palindromic in number bases 10 and some b 6= 10, and have d ≥ 2 digits in both
number bases. The result relies on exhaustive computation (see [8]).

• In 2010, Ba²i¢ shows that for any K ∈ N, d ≥ 2, there exists n ∈ N and a list of bases
{b1, b2, . . . , bK} such that n is a d digit palindrome in those bases (see [3]).

• Let h < g be multiplicatively independent and h|g. In 2014, Berczes and Ziegler have
shown for which such number bases h, g we have at most �nitely many simultaneous
palindromes. They also provided their upper bounds on the size of such palindromes.
(see [4]).

• In 2016, it was shown that for a number base g ≥ 5, every number can be written as
a sum of three base g palindromes (see [6]).

• In 2018, Lo and Paz �nd all (base 10) positive integers a, b such that b± a and ab are
simultaneously palindromic (see [11]).

Sadly, the mentioned results do not produce signi�cant conclusions about the consec-
utive palindromes themselves. Notice that consecutive palindromes are a special case of
simultaneous palindromes:
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De�nition 1.8. If n is nontrivially palindromic in k ≥ 2 consecutive number bases b, b +

1, . . . , b+ k − 1, then we say that n is a consecutive palindrome. For k = 2, 3, 4, . . . , we call

n a double, triple, quadruple,. . . palindrome, respectively.

We say that a consecutive palindrome has d digits if it has d digits in the smallest con-

secutive palindromic base b. If it has d digits in all of the k consecutive palindromic bases,

then we say that it is regular. Otherwise, it is an irregular consecutive palindrome.

For example, it can be shown that the smallest double palindrome is irregular and equals

10 = (1, 0, 1)3 = (2, 2)4.

Similarly, the smallest triple palindrome is regular and equals

178 = (4, 5, 4)6 = (3, 4, 3)7 = (2, 6, 2)8.

Irregular consecutive palindromes are rare compared to regular consecutive palindromes.
Therefore, in the following chapters, our main focus will be on regular consecutive palin-
dromes.

We suspect that a quadruple palindrome does not exist. This would imply that k ≥ 4

palindromes do not exist, since every k + 1 palindrome is necessarily a k palindrome by
De�nition 1.8.

We have contributed with some results on consecutive double and triple palindromes,
to the OEIS (https://oeis.org), under the sequences A279092 and A279093, respectively,
under the comments. These results will be presented in following chapters.

Searching for simultaneous and consecutive palindromes is equivalent to searching for
normal forms that are palindromic.

If n is not �xed, it is not trivial to �nd a normal form of a number n in some base b2 for
a given its normal form in base b1 6= b2. To �nd normal forms, we introduce an intermediate
step with the following two de�nitions. We will apply this in the linearization section.

De�nition 1.9. Let n, b ∈ N and b ≥ 2. If there exist integers d ∈ N, αi ∈ Z, i ∈ [1, d] such

that

n =
d∑

i=1

αib
d−i = (α1, α2, . . . , αd)b,

then the rightmost expression is called a general form of the number n in the number base b.

Speci�cally, if the general form is distinct from the corresponding base b normal form,

then it will be referred to as a irregular form of the number n in base b. That is, if there

exists i such that αi 6= ai where ai, i ∈ [1, d] are digits of the base b normal form of n, then

we call (α1, α2, . . . , αd)b an irregular form of the number n in base b.

Notice that the de�nition of the general form is similar to the normal form from De�nition
1.1, but we dropped the condition ai ∈ (0, b], a1 6= 0. The general form is not unique. For
given n, b, there are in�nitely many general (irregular) forms. Due to Proposition 1.3, all
general forms except one, are irregular forms.
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Observe that in the de�nition of the general form, for some oi ∈ Z, i ∈ [1, d], we have
αib

i = (αi ± oi)bi ∓ (oib)b
i−1. We can �carry over� multiples of b from consecutive digits by

changing the digits by ±oi parameters, without changing the value of n.
This gives us a bijection from some tuples (o0, o1, . . . , od−1) ∈ Zd and some general form,

to all other general forms with at most d+ 1 digits. This motivates the following de�nition.

De�nition 1.10. Let (a1, . . . , ad)b be some d digit general form of the number n in base b.

We de�ne (o0, o1, . . . , od−1) ∈ Zd as carry (over) parameters, such that

n = (a1, a2, a, ad−1, ad)b

= (0, a1, a2, . . . , ad−1, ad)b

= (o0, a1 + o1 − o0b, a2 + o2 − o1b, . . . , ad−1 + od+1 − od−2b, ad − od−1b)b.

The last line in the above equality sequence is referred to as the carried form, by the corre-

sponding carry (over) parameters (o0, o1, . . . , od−1).

If the carried form is normal, then it is also called the normalized form. In that case, the

carry parameters are referred to as the normalization parameters.

If more than d+ 1 digits are needed, one can de�ne oi's for i < 0 to extend the bijection

to general forms of at most d+ 1 + d′ digits, by introducing d′ more leading 0 digits.

Corollary 1.11. If n has at most d0 + 1, d0 ∈ N digits in its normal form in some base

b, then for any d0 digit general form of n in the base b, there exists a unique tuple of

carry parameters (o0, o1, . . . , od0−1) such that the carried form is a normal form. That is,

normalization parameters of a general form of some n in some base b, are unique.

The above corollary is true since the normal form is unique as given in Proposition 1.3,
and since the carry parameters are in bijection with all such general forms, among which
exactly one general form is that unique normal form.

Notice that, individual carry parameters oi represent the changes applicable to digits of
a general form of some number n in base b, such that the value of n is unchanged.

We have translated the problem of �nding normal forms to the problem of normalizing
arbitrary general forms. This will be applied in Subsection 2.1.1.
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2 Regular consecutive palindromes

In the previous chapter, we have de�ned regular consecutive palindromes as positive
integers n that are simultaneously and nontrivially palindromic in k ≥ 2 number bases
b, b + 1, . . . , b + k − 1, and have exactly d digits in all of those number bases. This means
that 2 ≤ b ≤ n − 2 and d ≥ 2. It is not hard to see that if n is a consecutive palindrome
starting at base b, then d ≥ 2 implies b ≤ n− 2.

Note that a number n is palindromic in k consecutive number bases if and only if n is a
double palindrome in all consecutive pairs of bases (b, b+1), (b+1, b+2), . . . , (b+k−2, b+k−1).
If we �nd a set of all double palindromes, we could �nd all k > 2 palindromes by intersecting
those found solutions. Hence, for now, let us restrict to k = 2.

Let a1, . . . , ad and c1, . . . , cd be digits of normal forms of the number n in bases b and
b + 1, respectively. The number n is a double consecutive palindrome if and only if these
digits satisfy the following system:

n =
d∑

i=1

aib
d−i =

d∑
i=1

ci(b+ 1)d−i

ai ∈ [0, b), ci ∈ [0, b+ 1), a1 6= 0, c1 6= 0, b ≥ 2, d ≥ 2, i ∈ [1, d]

ai = ad−i+1, ci = cd−i+1,∀i ∈ [1, d].

(2.1)

Due to Proposition 1.3, we can express the base b + 1 digits over the base b digits, as
they uniquely determine each other. Additionally, digits are palindromic. Therefore, for a
�xed d ≥ 2, we need to determine dd/2e digits in either number base.

Before linearizing equation (2.1) to obtain the corresponding linear Diophantine systems
which we need to solve, �rst we will prove that solutions do not exist if d is even.

Lemma 2.2. If n ∈ N is a palindrome with an even amount of digits d = 2l, l ∈ N in the

number base b, then it is divisible by b+ 1.

Proof:

The proof relies on modular arithmetic. Let x, y ∈ N0. Notice that bx ≡ (−1)x (mod b+1).
Then, for x, y of distinct parity, bx + by ≡ 0 (mod b+ 1). Now, observe that if n is an even
length palindrome with d = 2l, l ∈ N digits, then

n =
2l∑
i=1

aib
2l−1 =

l∑
i=1

ai(b
2l−i + bi−1) ≡ 0 (mod b+ 1).

If n is divisible by b + 1, then it ends in cd = 0 in base b + 1, and thus cannot be
palindromic, since c1 6= 0 contradicts with c1 = cd. Hence, the above lemma implies the
following theorem.
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Theorem 2.3. If the system (2.1) has solutions, then the digit case under which it was

solved is odd, i.e., d = 2l + 1, l ∈ N.

The implication is, that there are no consecutive palindromes with an even number of
digits. So from now on, assume d = 2l + 1, l ∈ N, which means that the number of digits is
odd.

2.1 Linearizing corresponding Diophantine system

The goal is to reduce the system (2.1) to a set of linear Diophantine systems. Such
and similar systems and equations are well studied (see [5, 10, 21]). We �x the variable d
and apply a linearization method. Afterwards, by solving �nitely many systems of linear
Diophantine equations, we obtain all regular d digit k-consecutive palindromes. We can
solve these systems in software like Wolfram Mathematica (see [20]) and SageMath (see [2]).
Note that generally systems of linear Diophantine equations in {+,−,×, /, mod , <} are not
necessarily always solvable in strongly polynomial time (see [9]).

Recall that we �xed k = 2 for the system (2.1). For k > 2, we could set up a similar
system and linearize it analogously. But, there is no need for this if we solve k = 2, since
those solutions are reducible to k > 2 solutions, for a �xed d digit case. The case of k = 3

solutions obtained by such reduction is presented in Section 2.3.

2.1.1 Carry over parameters linearization method

We will look at the system (2.1), but backward. Instead of bases b, b + 1 we consider
bases b, b− 1 and b ≥ 3. The only reason for going backward is, to end up with nonnegative
digits in the general form we will obtain. We have:

n =
d∑

i=1

aib
d−i =

d∑
i=1

ci(b− 1)d−i

ai ∈ [0, b), ci ∈ [0, b− 1), a1 6= 0, c1 6= 0, b ≥ 2, d ≥ 2, i ∈ [1, d]

ai = ad−i+1, ci = cd−i+1,∀i ∈ [1, d].

(2.4)

The idea is to express digits ci in terms of digits ai. Observe that

d∑
i=1

aib
d−i =

d∑
i=1

ai((b− 1) + 1)d−i =
d∑

i=1

ci(b− 1)d−i.

By using the binomial expansion and applying De�nition 1.10 in the case o0 = 0, we obtain

ci =
i∑

j=1

(
d− j
d− i

)
aj =

i∑
j=1

(
d− j
d− i

)
aj + oi − oi−1(b− 1). (2.5)

Corollary 1.11 implies that there are �nitely many (o1, . . . , od−1) such that the general form
given by ci, i ∈ [1, d] is normal.
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We can now iterate all of the �nitely many values of (o1, . . . , od−1). This gives us a linear
system of Diophantine equations

ci = cd−i+1, i ∈ [1, d], (2.6)

which we have to solve in each iteration, under conditions ai ∈ [0, b), ci ∈ [0, b − 1), a1 6=
0, c1 6= 0, b ≥ 2, where d ≥ 2 is �xed and ai = ad−i+1, i ∈ [1, d] (from n). We are solving
it for ai, i ∈ [1, d] and b. The upper and lower bounds on individual oi are not immediately
clear.

For example, one family of solutions to these systems is explicitly known and given in
equation (2.11). The special property of this example is that it is not limited by �xed cases
of d, but instead spans across arbitrary values of digits d.

2.1.2 Free polynomial term linearization method

This method was suggested to us by Alekseyev on Math Over�ow (see [2]), where he gives
an example in the case of d = 5 and bases b, b − 1. Here we will observe d in general and
bases b, b + 1. Compared to the previous method, the obtained systems will be equivalent.
But, the upside here is, that we get bounds on introduced parameters immediately.

The idea here is to look at the equality in the system (2.1) as equality of polynomials
P (b) = P (b+1) and to observe P (b+1)−P (b) = 0. We write the left-hand side as a uni�ed
polynomial P (b + 1) − P (b) = T (b) in terms of b. The binomial expansion gives us T (b)
explicitly, and we are left with the equality:

T (b) =
d∑

i=1

tib
d−i =

d∑
i=1

(
i∑

j=1

(
d− j
d− i

)
cj − ai

)
bd−i = 0. (2.7)

Let d = 2l + 1, l ∈ N. For i ∈ [1, d] we have the palindromic conditions

ai = ad−i+1,

ci = cd−i+1,

and normal form conditions (b ≥ 2 is a number base)

ai ∈ [0, b) = [0, b− 1], a1 6= 0,

ci ∈ [0, b+ 1) = [0, b], c1 6= 0.

Now we will linearize this by obtaining bounds on coe�cients td, td−1, . . . , t1 of T (b). We will
introduce parameters k1, k2, . . . , kd−1 whose bounds will follow from the coe�cient bounds.
Those parameters will be used to replace td−i+1 with kib, for i ∈ [1, d], so we can apply
division by b on equality (2.7).

We start by extracting bounds of td, the free term of T (b). Applying the palindromic
conditions on (2.7), we obtain

td = 2
l∑

j=1

cj + cl+1 − a1.
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Now, applying the normal form conditions, we get the bounds on td, i.e.,

td ∈ 2[1, b] + 2
l∑

j=2

[0, b] + [0, b]− [b− 1, 1] = [3− b, (2l + 1)b− 1] .

Since T (b) = 0, the free term td is divisible by b. This implies that td = k1b, for some integer
k1 ∈ Z. From the conditions on td we have

3

b
− 1 ≤ k1 ≤ 2l + 1− 1

b
=⇒ k1 ∈ [0, 2l] =: K1.

Now, we replace td by k1b in equation (2.7), and divide it by b. The new free term will be
k1 + td−1.

We repeat this process with the new free term. At the end, we obtain again a new
parameter k2 ∈ K2 and a new free term k2 + td−2. This procedure is continued until the
(d− 1)th step, where we end up with kd−1+ t1 = 0. At the end, this process gives us �nitely
many linear Diophantine systems 

td = k1b

k1 + td−1 = k2b

k2 + td−2 = k3b

...

kd−2 + t2 = kd−1b

kd−1 + t1 = 0

, (2.8)

by iterating over all possible combinations of k1, . . . , kd−1 parameters, whose upper and lower
bounds will be known ki ∈ Ki ⊂ Z, i ∈ [1, d − 1]. �Together with the bounding conditions
for ai and ci, each such system de�nes a polyhedron (possibly unbounded), whose integer
points can be found with existing algorithms� - Alekseyev (see [2]).

We have obtained a set of linear Diophantine systems in variables ai, ci, i ∈ [1, l+ 1] and
b, determined by d− 1 additional parameters ki ∈ Ki, i ∈ [1, d− 1], where d = 2l + 1, l ∈ N
is �xed. In comparison to the �rst method, these parameters would be analogous to oi, i ∈
[1, d− 1] carry parameters.

Notice that this method is nothing more, but an extension to the method from Subsection
2.1.1, but now, we additionally and immediately know bounds on introduced parameters.
However, we keep in mind that these obtained parameters are not optimal. That is, only a
fraction of their combinations will give systems that have solutions. To solve greater digit
cases d in a reasonable time, these parameters need to be optimized.

Summarizing the methods known so far, we have the following corollary.

Corollary 2.9. Solving systems (2.1) and (2.4) for some �xed d = 2l+1, l ∈ N, is equivalent
to solving all linear Diophantine systems given by either systems (2.5) and (2.6) or by systems

(2.7) and (2.8).
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This corollary tells us how we will obtain regular double palindromes in the next section.
Keep in mind that the Subsection 2.1.1 was stated in terms of bases b, b − 1 and that the
Subsection 2.1.2 was stated in terms of bases b, b+ 1. Hence, digits represented by ai, ci are
swapped, and the bases are o�set by one.

Solving these systems we obtain all solutions for some �xed values d. It is not easy to �nd
the general solution for all digit cases d (a �closed form� of all such palindromes). However,
there could be means to obtain in�nite families of solutions spanning across arbitrary digit
cases d. At the beginning of the next section, �rst we will present one such family. It was
found by speculation and then proven by construction. We are not sure how to obtain more
such families of solutions covering non-�xed values d.

2.2 Two number bases

In this section, we will consider solving of systems of linear Diophantine equations ob-
tained from applying the linearization methods presented in the previous section, to obtain
regular double palindromes (k = 2). Theorem 2.3 implies that we only need to consider odd
digit cases, i.e., d = 2l + 1, l ∈ N.

Before we start, we will present a result: A family of solutions to systems given in
Corollary 2.9 is known, which yields in�nitely many solutions for every (odd) digit case. We
would also strongly conjecture, that when ignoring this family of solutions, we are still left
with in�nitely many solutions for every (odd) digit case.

We acknowledge that the identity in the following theorem was suggested by the user
named Peter. We subsequently presented the proof, under the username Vepir. Both
posts are available on the Mathematics Stack Exchange (MSE) website, under the question
�Arbitrarily long palindromes in two consecutive number bases� (see [19]).

Theorem 2.10 (The trivial family of regular double palindromes).
Let l ∈ N, l > 1. The number

n =
b2l − 1

b+ 1

is a d = 2l − 1 digit double palindrome in bases b, b+ 1, for all b ≥
l∑

s=1

(
l
s

)2
=
(
2l
l

)
− 1.

Proof:

The proof is constructive. Firstly, it is not hard to see that the given n is palindromic in
base b:

b2l − 1

b+ 1
= (b− 1, 0, b− 1, 0, . . . , 0, b− 1, 0, b− 1)b.

To prove that it is also palindromic in base b + 1, we de�ne the symmetric (palindromic)
digits

Al(i) =

{
b−

(
2l

2l−i

)
+ 1, i is odd(

2l
2l−i

)
− 1, i is even

,
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where i ∈ [1, 2l−1]. Notice that Al(i) is maximal at i = l, which gives Al(i) ≤
(
2l
l

)
−1 < b+1.

It is clear that Al(i) ≥ 0, for i ∈ [1, 2l − 1]. This implies that the palindromic form

(Al(1), Al(2), . . . , Al(2l − 1))b+1

is a valid 2l − 1 normal form of some number m in base b+ 1, for all b ≥
(
2l
l

)
− 1. What is

left to show, is that m = n. That is, we need to prove that the normal form sum of m (see
De�nition 1.1) is given by the closed form expression of n, i.e.,

m = (Al(1), Al(2), . . . , Al(2l − 1))b+1 =
2l−1∑
i=1

Al(i)(b+ 1)2l−1−i =
b2l − 1

b+ 1
= n.

This is easily veri�ed with a Computer Algebra System (CAS) like Wolfram Mathematica.

The Wolfram Mathematica code that will verify the end of the above proof, can be run
in the freely accessible Wolfram Lab if the license of the mentioned software is not available
to the reader. It is given with

A[i_, l _] := (b ((-1)^(i+1)+1)/2 + (-1)^i (Binomial[2l,-i+2l]-1));

s = Sum[A[i, l ] (b + 1)^(2 l - 1 - i), {i, 1, 2 l - 1}];

FullSimplify[s, Element[l, Integers]].

We can rewrite results from Theorem 2.10 in the context of systems obtained by lin-
earization methods from Section 2.1.

That is, we use the �rst linearization method presented in Subsection 2.1.1. Here we have
bases b, b − 1 instead of bases b, b + 1 as originally stated in the theorem, since the system
(2.6) was obtained by linearizing the system (2.4). We have family from Theorem 2.10 in
this context: (

ai =

{
b−

(
2l0

2l0−i

)
, i is odd(

2l0
2l0−i

)
− 1, i is even

: i ∈ [1, l0], l0 > 1; b ≥
(
2l0
l0

))
b

, (2.11)

over all such l0, b and all odd d. Now, parameters oi, i ∈ [1, d − 1] can be backtracked and
deduced, for this particular set of solutions, for every case of l0 = 2, 3, 4, 5, . . . :

(o1, . . . , od−1) = (2, 1), (4, 6, 6, 2), (6, 15, 24, 21, 12, 3), (8, 28, 62, 85, 80, 49, 20, 4), . . . ,

corresponding to l = 1, 2, 3, 4, . . . , that is, to the l = l0 − 1, d = 2l + 1 digit regular double
palindromes. Similarly, we could rewrite the family in the context of the other linearization
method from Subsection 2.1.2.

Theorem 2.10 directly implies the following corollary:

Corollary 2.12. For every �xed d = 2l + 1, l ∈ N odd case of digits, there are in�nitely

many d digit regular double palindromes.
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This implies that consecutive palindromes can be arbitrarily long, in terms of digits.
As mentioned earlier, we strongly conjecture that there are in�nitely many regular double
palindromes, for every �xed odd case of digits, other than those provided by the identity in
Theorem 2.10. Finding a closed form for all of them looks hard.

Problem 2.13 (Open Problem). Can we �nd more families of regular double palindromes

that span across arbitrary digit cases d, other than the one given in Theorem 2.10?

Perhaps someone interested in this topic can establish more such families.
We are not able to construct more such families nor solve the problem of �nding all regular

double palindromes generally for all digits. Hence, we decided to �x the digits variable d.
This allows us to apply the proposed linearizations from Subsections 2.1.1, 2.1.2 to obtain
double palindromes for �xed digit cases d.

2.2.1 Three digits case

In this subsection, we will determine all d = 3 (l = 1) regular double palindromes. We
have previously shared this result under the OEIS sequence A279092 and on Math Over�ow
(see [18]). When we solve either set of linear Diophatine systems given in Corollary 2.9 for
d = 3, we obtain the following:

Theorem 2.14 (Three digit regular double palindromes). The number n ∈ N is a regular

d ≤ 3 digit double palindrome if and only if it belongs to one of the following two normal

form families:

n1 = (x+ 4, 0, x+ 4)x+5 = (x+ 2, 5, x+ 2)x+6

n2 = (x+ 2, x+ 3, x+ 2)x+y+4 = (x+ 1, y + 4, x+ 1)x+y+5

,

were x, y ∈ N0.

The proof of Theorem 2.3 is structured as follows:
Firstly, d ≥ 2 holds by De�nition 1.8. Secondly, d = 2 does not have solutions by

Theorem 2.3. Finally, by solving systems from Corollary 2.9 for d = 3 we obtain normal
forms from Theorem 2.14. We will demonstrate how to solve systems from Corollary 2.9 for
d = 3 using both linearization methods. Looking at either bases b, b+1 or bases b, b− 1, we
need to �nd all n ∈ {n1, n2, . . . } such that

n = (a1, a2, a1)b = (c1, c2, c1)b±1.

First, we show how to solve this with the second linearization approach, entitled with
Proof I. Here we simply use a computer to solve the obtained system.

Afterward, we again solve this but now with the �rst linearization approach, entitled
with Proof II. Here we use the idea of normalization presented in De�nition 1.10.
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Proof I.

Here we use the polynomial method given in Subsection 2.1.2 to obtain the systems of linear
Diophantine equations. The introduced parameters k1, k2 will immediately be given bounds.
We have the following system:

0 + 2c1 + c2 − a1 = k1b, k1 ∈ [0, 2]

k1 + 2c1 + c2 − a2 = k2b, k2 ∈ [0, 3]

k2 + c1 + a1 = 0

, (2.15)

where a1 ∈ [1, b− 1], a2 ∈ [0, b− 1], c1 ∈ [1, b], c2 ∈ [0, b], b ≥ 2.
Now, we can solve the 3 · 4 = 12 corresponding systems of linear Diophantine equations

(iterate and �x k1, k2 to obtain individual systems) with existing algorithms (Section 2.1).
Alternatively, in this particular case of a small value d, these systems can be directly solved
with Wolfram Mathematica.

We get that the only solutions are n1, n2 as given in Theorem 2.14, and we are done. We
also get that pairs (k1, k2) corresponding to those solutions are (1, 2), (1, 1), respectively.

Out of 12 systems produced by approach from Subsection 2.1.2, only 2 of them had
solutions. For cases of greater d, there is a signi�cant increase in the number of solutionless
systems. This leads us to consider if further optimization of approach from Subsection 2.1.2
is possible.

In the second proof, we have a slightly longer story. Unlike the bounded ki parameters
in Subsection 2.1.2, the bounds on parameters oi are not given in Subsection 2.1.1.

Proof II.

Here we use the carry over method given in Subsection 2.1.1. It gives us one base b − 1

general form

n = (a1, a2, a1)b = (c1, c2, c3)b−1 = (a1, 2a1 + a2, 2a1 + a2)b−1,

where we need to satisfy a1 ∈ [1, b− 1], a2 ∈ [0, b− 1], c1 ∈ [1, b− 2], c2 ∈ [0, b− 2], b ≥ 2 and
c1 = c3. We can express conditions on c1, c2, c3 over a1, a2:

c1 = a1 + o1 ∈ [1, b− 2]

c2 = 2a1 + a2 − o1(b− 1) + o2 ∈ [1, b− 2] ,

c3 = 2a1 + a2 − o2(b− 1) ∈ [0, b− 2]

and observe that
c1 = c3 ⇐⇒ a1 + o1 = 2a1 + a2 − o2(b− 1).

First we want to establish all carry parameters O2 := (o1, o2) under which the system could
have solutions. That is, set up our parameter bounds.

Firstly, notice that O2 = (0, 0) does not have solutions since c1 = a1 < 2a1+a2 = c3, i.e.,
the unit digit c3 is too large. Additionally, observe that decreasing either or both o1, o2 will
make the di�erence |c1 − c3| greater. This implies that o1, o2 must be nonnegative.
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Since c2 = c3, when o1 = o2 = 0, we have that O2 6∈ {(1, 0), (0, 1)}. Otherwise, one of the
c2, c3 will be at least b− 1 if the other one is not. Now, we have the lower bounds on carry
over parameters o1, o2 ≥ 1.

Notice that base b ≥ max{a1, a2} + 1, since a1, a2 < b. Substituting this, we get that if
o2 ≥ 3, then c3 ≤ 0, which contradicts with c3 = c1 6= 0, implying o2 ≤ 2.

Recalling b − 1 ≥ 2, o2 ≤ 2 and assuming o1 ≥ 4 we obtain c2 ≤ −(b − 1) + 2, implying
o1 ≤ 3. Summing this up, we are left with O2 ∈ {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)}.
Finally, we can eliminate the case O2 = (3, 1), since c3 < (b− 1) implies 2a1 + a2 < 2(b− 1),
implying c2 < −(b− 1) + 1 which is negative.

After obtaining O2 ∈ {(1, 1), (1, 2), (2, 1), (2, 2), (3, 2)}, we can analyze each case individ-
ually and apply the analysis of the normal forms we de�ned. This avoids solving systems of
linear Diophantine equations altogether, for this particularly small case of value d.

• In the case of O2 = (2, 1), notice that the solution of the system is given in Theorem
2.10, when looking at it in the context of carry parameters (2.11) when l0 = 2 (l =

1, d = 3). This solution corresponds to n1 in Theorem 2.14.

What is left, is to �nd n2 and show that other cases do not have additional solutions. De�ne
the base b0 = b− 1 = max{a1, a2}+ β0, β0 ∈ N to satisfy conditions a1, a2 < b.

• In the case of O2 = (1, 1), we have

n = (a1 + 1, 2a1 + a2 − b0 + 1, 2a1 + a2 − b0)b0 ,

where a1 + 1 = 2a1 + a2 − b0 ⇐⇒ a2 = b0 − a1 + 1. This is not a problem, since
a2 < b ⇐⇒ b− 1− a1 + 1 < b ⇐⇒ a1 > 0. This gives

n = (a1 + 1, a1 + 2, a1 + 1)b0 .

Notice that this base b0 form does not depend on a2 anymore. We only need a1+2 < b0,
so we write b0 = a1 + 2 + β, β ∈ N. We replace a1 with x ∈ N0 and 2 + β with y ∈ N0

to �nally obtain the solution to this case, i.e.,

n = (x+ 2, x+ 3, x+ 2)x+y+4,

which gives n2 in Theorem 2.14.

• In cases O2 = (1, 2), (2, 2), (3, 2), we have o2 = 2. This will lead to

a1 + o1 = 2a1 + a2 − 2b0 ⇐⇒ a2 = 2b0 − a1 + o1.

But this is a contradiction. Recall that b0 = b− 1 and that a2 < b, so we have

2(b− 1)− a1 + o1 < b ⇐⇒ a1 ≥ b+ (o1 − 1),

which contradicts with a1 < b, for o1 ≥ 1.

We've obtained n1, n2 and shown that n3, n4, n5, . . . do not exist. This �nishes the proof.
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2.2.2 Five digits case

In this subsection, we will present all d = 5 (l = 2) regular double palindromes. We have
previously shared this result on Math Over�ow, but in bases b, b− 1 (see [18]).

Theorem 2.16 (Five digit regular double palindromes). The number n = (a1, a2, a3, a2, a1)b

is a regular d = 5 digit double palindrome in number bases b, b + 1 if and only if base b and

its digits belong to one of the following cases:

(k1, k2, k3, k4) a1 a2 a3 b
(1, 2, 3, 1)∗ 4 + x+ y 1 + 2a1 −b+ 3a1 10 + 3x+ 2y
(1, 3, 3, 2)∗ 14 + x 1− b+ 2a1 1− b+ 3a1 2a1 − 6

12 + x 1− b+ 2a1 1− b+ 3a1 2a1 − 5
10 + x 1− b+ 2a1 1− b+ 3a1 2a1 − 4
8 + x 1− b+ 2a1 1− b+ 3a1 2a1 − 3
6 + x 1− b+ 2a1 1− b+ 3a1 2a1 − 2
7 + x 1− b+ 2a1 1− b+ 3a1 2a1 − 1
8 + x 1− b+ 2a1 1− b+ 3a1 2a1 ± 0
9 + x 1− b+ 2a1 1− b+ 3a1 2a1 + 1

(1, 3, 4, 2) [4, 6] 1− b+ 2a1 −2b+ 3a1 a1 + 1
[4, 7] 1− b+ 2a1 −2b+ 3a1 a1 + 2
[6, 8] 1− b+ 2a1 −2b+ 3a1 a1 + 3
[8, 9] 1− b+ 2a1 −2b+ 3a1 a1 + 4
10 1− b+ 2a1 −2b+ 3a1 a1 + 5

(2, 4, 3, 1)∗ 2 + x 2 + 2a1 3 + 3a1 10 + 3x+ y
(2, 4, 4, 1)∗ 13 + 3x 2 + 2a1 2− b+ 3a1 3a1 − 2

11 + 3x 2 + 2a1 2− b+ 3a1 3a1 − 1
9 + 3x 2 + 2a1 2− b+ 3a1 3a1 ± 0
7 + 3x 2 + 2a1 2− b+ 3a1 3a1 + 1
8 + 3x 2 + 2a1 2− b+ 3a1 3a1 + 2

(2, 5, 4, 2) [6, 7] 2− b+ 2a1 3− b+ 3a1 2a1 − 1
[4, 8] 2− b+ 2a1 3− b+ 3a1 2a1 ± 0
[3, 9] 2− b+ 2a1 3− b+ 3a1 2a1 + 1
[3, 10] 2− b+ 2a1 3− b+ 3a1 2a1 + 2

(2, 5, 5, 2) 4 2− b+ 2a1 2− 2b+ 3a1 2a1 − 2
[3, 4] 2− b+ 2a1 2− 2b+ 3a1 2a1 − 1

(2, 5, 6, 3)∗ 14 + 2x+ y 2− b+ 2a1 1− 2b+ 3a1 16 + 3x+ y
(2, 6, 6, 4)∗ 18 + x 2− 2b+ 2a1 2− 2b+ 3a1 19 + x
(3, 7, 6, 3)∗ 23 + 2x+ y 3− b+ 2a1 4− b+ 3a1 37 + 3x+ 2y
(3, 7, 7, 3)∗ [10, 19] + 2x 3− b+ 2a1 3− 2b+ 3a1 2a1 − x− 8

[11, 14] + 2x 3− b+ 2a1 3− 2b+ 3a1 2a1 + x+ 2
(3, 8, 8, 4) [12, 16] 3− 2b+ 2a1 3− 3b+ 3a1 a1 + 1

.

Table 1: Base b digits of all bases b, b+ 1 �ve digit regular double palindromes.

Here x, y ∈ N0 and [z1, z2] goes over �nitely many integers. Cases (k1, k2, k3, k4)
∗ generate

in�nitely many solutions and are called in�nite families of solutions. The remaining cases

(k1, k2, k3, k4) generate �nitely many solutions and are called �nite families of solutions.
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The following table gives the corresponding base b+1 digits (c1, c2, c3, c2, c1)b+1, in terms

of b and a1 from the above Table 1

(k1, k2, k3, k4) c1 c2 c3
(1, 2, 3, 1)∗ −1 + a1 2 + b− 2a1 −2− b+ 3a1
(1, 3, 3, 2)∗ −2 + a1 6 + b− 2a1 −8− b+ 3a1
(1, 3, 4, 2) −2 + a1 5 + b− 2a1 −6− b+ 3a1
(2, 4, 3, 1)∗ −1 + a1 3 + b− 2a1 −4 + 3a1
(2, 4, 4, 1)∗ −1 + a1 2 + b− 2a1 −2 + 3a1
(2, 5, 4, 2) −2 + a1 6 + b− 2a1 −8 + 3a1
(2, 5, 5, 2) −2 + a1 5 + b− 2a1 −6 + 3a1
(2, 5, 6, 3)∗ −3 + a1 8 + 2b− 2a1 −10− 2b+ 3a1
(2, 6, 6, 4)∗ −4 + a1 12 + 2b− 2a1 −16− 2b+ 3a1
(3, 7, 6, 3)∗ −3 + a1 9 + 2b− 2a1 −12− b+ 3a1
(3, 7, 7, 3)∗ −3 + a1 8 + 2b− 2a1 −10− b+ 3a1
(3, 8, 8, 4) −4 + a1 11 + 2b− 2a1 −14− b+ 3a1

.

Table 2: Base b+ 1 digits of all bases b, b+ 1 �ve digit regular double palindromes.

Notice that there are 12 cases of (k1, k2, k3, k4) parameters under which solutions exist,
compared to only 2 such cases in the three digit Theorem 2.14. Observe that the d = 5

solutions given by the trivial family Theorem 2.10 represent the (k1, k2, k3, k4) = (2, 6, 6, 4)

case. This is seen in equation (2.11) in terms of (o1, o2, o3, o4) = (4, 6, 6, 2) parameters, when
we substitute in d = 5 (l0 = 3 ⇐⇒ l = 2).

Theorem 2.16 was obtained by solving systems from Subsection 2.1.2 for d = 5. That
is, �nding regular �ve-digit double palindromes is equivalent to solving the following set of
linear Diophantine systems generated by ki, i ∈ [1, 4] parameters:

0− a1 + 2c1 + 2c2 + c3 = k1b, k1 ∈ [0, 4]

k1 − a2 + 4c1 + 4c2 + 2c3 = k2b, k2 ∈ [0, 10]

k2 − a3 + 6c1 + 3c2 + c3 = k3b, k3 ∈ [0, 10]

k3 − a2 + 4c1 + c2 = k4b, k4 ∈ [0, 5]

k4 − a1 + c1 = 0

, (2.17)

where a1 ∈ [1, b− 1], a2, a3 ∈ [0, b− 1], c1 ∈ [1, b], c2, c3 ∈ [0, b], b ≥ 2.
This can be solved by applying existing algorithms (Section 2.1), for example, in SageMath

(see [2]). Additionally, since this case of digits d = 5 is relatively small, it is also directly solv-
able with Wolfram Mathematica's general purpose Reduce[] method, in reasonable time.
For cases d ≥ 7, the computational time of Reduce[] is too long.

The computational time can be optimized by optimizing bounds on ki, i ∈ [1, d − 1]

parameters before applying the solving procedure on them. Notice that only a fraction of
cases given by iterating all ki, i ∈ [1, d−1] actually has solutions. In the current case of d = 5

digits, we are looking to solve 5 · 11 · 11 · 6 = 3630 systems of linear Diophantine equations,
out of which only 12 have solutions.
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We will provide the direct (not optimized) code for Wolfram Mathematica 11.2 that
directly uses the general-purpose Reduce[] method. This can be used to verify Theorem
2.16 in a matter of minutes. The following code solves all systems given by (2.17):

ClearAll[a, c, b, l, x, eq, bUp, bLow, sys];

x[a_, b_, l_] := Sum[a[i+1] (b^i + b^(2l-i)), {i, 0, l-1}] + a[l+1] b^l;

eq[l_] := Fold[And, MapIndexed[#1 == k[First[#2]] b &, CoefficientList[

x[c, b + 1, l] - x[a, b, l] + Sum[k[i] b^i, {i, 0, 2 l}], b]]

/. {k[0] -> 0, k[2 l + 1] -> 0}];

bUp[l_] := Fold[And, Join[Table[a[i + 1] < b, {i, 0, l}],

Table[c[i + 1] < b + 1, {i, 0, l}]]];

bLow[l_] := Fold[And, Table[If[i == 0,

a[i + 1] >= 1 && c[i + 1] >= 1,

a[i + 1] >= 0 && c[i + 1] >= 0], {i, 0, l}]];

sys[l_] := eq[l] && bUp[l] && bLow[l];

i=0; Timing[Do[ r = Reduce[sys[2] && b >= 2 && (k[1] == k1) &&

(k[2] == k2) && (k[3] == k3) && (k[4] == k4), Variables[sys[2]], Integers];

If[Length[r] > 0, i += 1; Print[i, " ", {k1, k2, k3, k4}, " ", r]],

{k1, 0, 4}, {k2, 0, 10}, {k3, 0, 10}, {k4, 0, 5}]].

Solutions in the output will be formatted similarly as stated in Theorem 2.16.

2.2.3 Seven or more digits

Individual d ≥ 7 (l ≥ 3) cases can be obtained (computed) by applying existing algo-
rithms (Section 2.1), to linear Diophantine systems given in Subsection 2.1.2. To be more
precise, this can be automated in SageMath (see [2]). The process becomes computationally
harder for every next case of digits d.

We will not be explicitly listing any d ≥ 7 double palindrome solutions in this paper.
E�ciently generating and collecting solutions of such systems beyond this point becomes a
problem of its own. For example, considering systems of Subsection 2.1.2 in cases d = 7, 9, 11

would require processing (solving) ≈ 107, 1013, 1020 linear systems of Diophantine equations,
assuming we do not optimize bounds on ki, i ∈ [1, d − 1] parameters. Additionally, the
solution cases get more numerous and harder to write down in a compact form.

Instead of collecting �nitely many d cases, we would like to put an emphasis on solving
this problem in a more general sense. That is, �nding all regular double palindromes for all
d remains an open problem. A weaker variation of this problem is to �nd isolated families
of solutions that would span across arbitrarily large cases of d. This is proposed in Problem
2.13. So far, only one such family is known, and is given in Theorem 2.10. Finding more
such families is an open problem.

Summarizing that, we shift our interest from regular double palindromes to regular triple
palindromes. Their structure of solutions is much more compact as they are much rarer.
They are discussed in the following section.
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2.3 Three number bases

In the previous chapter, we discussed regular double palindromes (k = 2). We found that
individual cases of digits d can be solved by applying the approach from Subsection 2.1.2
such as we demonstrated with d = 3, 5. We do not know if it is possible to do the same for
a general d. The closest result to a general solution we have is in Theorem 2.10 which gives
only the so-called trivial family of solutions.

Hence, in this chapter, we will try to �nd out if the regular triple palindromes (k = 3),
could have a nice closed form. This chapter will be brief. By using what was presented in the
previous chapter, we computationally solved the problem for d = 3, 5, 7 double palindromes.
To get d = 3, 5, 7 triple palindromes in number bases b, b + 1, b + 2, we simply solve the
problem for the intersection of bases b, b+ 1 and bases b+ 1, b+ 2 double palindromes. For
d ≥ 9, it appears that there are no additional solutions. Recall that the number of digits d
must be odd as it is given in Theorem 2.3.

2.3.1 Short digit cases

We say that a regular triple palindrome is �short� if it has d ≤ 7 digits. To obtain all
short regular triple palindromes, we look at the consecutive pairs of bases of solutions of
regular double palindromes and �nd their intersection. We have solved this computationally
and shared the obtained result on Mathematics Stack Exchange (see [17]). That is, we have
obtained the following result:

Theorem 2.18 (Short regular triple palindromes). The number n ∈ N is a d ≤ 7 digit

regular triple palindrome in bases b, b − 1, b − 2 if and only if it belongs to one of the 9

families of normal forms or is one of the 13 non-family examples. Let d′ = (d + 1)/2. To

write down all families, we use the following notation:

(a1 + α1t, . . . , ad′ + αd′t, . . . , ad + αdt)b = (a1, . . . , ad′) + (α1, . . . , αd′)t = (ai) + (αi)t.

Let t ∈ N0. The 9 families (in base b) are given by the following sets of normal forms:

d (ai) (αi)t b
d = 3 (2, 6) (1, 1)t 2t+ 8
d = 5 (31, 32, 0) (3, 2, 1)t 4t+ 47
d = 7 (34, 50, 10, 74) (1, 1, 1, 1)t 2t+ 76
d = 7 (8, 33, 0, 41) (1, 3, 1, 3)t 6t+ 58
d = 7 (112, 15, 0, 36) (4, 0, 1, 0)t 6t+ 175
d = 7 (227, 160, 187, 200) (5, 3, 5, 3)t 6t+ 280
d = 7 (5, 23, 6, 14) (2, 6, 5, 0)t 12t+ 39
d = 7 (93, 78, 30, 50) (10, 6, 7, 0)t 12t+ 119
d = 7 (47, 150, 249, 26) (2, 6, 11, 0)t 12t+ 291

.

Table 3: Base b digits of short families of regular triple palindromes in bases b, b− 1, b− 2.
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The non-family examples are:

• If d = 7, then n = 3360633, 19987816, 43443858, 532083314, 1778140759,

2721194733, 11325719295, 47622367425, 97638433343, 224678540182, 265282702996,

561091062285 for b = 11, 15, 17, 24, 28, 30, 30, 38, 42, 44, 45, 50, respectively.

• If d = 5, then non-family examples do not exist.

• If d = 3, then the only non-family example is n = 300 for b = 9.

For example, the �rst family �(2, 6) + (1, 1)t = (2 + t, 6 + t, 2 + t)b, b = 2t + 8� for t = 0

gives the smallest example n = (2, 6, 2)8 = (3, 4, 3)7 = (4, 5, 4)6 = 178 which is a regular
triple palindrome in number bases 8, 7, 6.

Notice that families in Theorem 2.18 are given as compact closed forms. For example, all
d = 5 regular triple palindromes are given by the family �(31, 32, 0) + (3, 2, 1)t, b = 2t + 8�.
In comparison, all d = 5 regular double palindromes do not have a compact closed form and
are instead given by the Table 1.

We can rewrite families from Theorem 2.18 in their numerical form n = f(b), i.e., as
polynomials in b. We can also write the digits from all three bases b, b + 1, b + 2 in the
(ai) + (αi)t notation. We say that a family given by corresponding f(b) is p-periodic if
b = b0 + pt for some constants b0, p.

For example, the three digit family is 2-periodic:

(d = 3) 2− periodicf(b)

b = 8 + 2t f(b) = 1
2
(b3 − 3b2 + 5b− 4)

b+ 0
b+ 1
b+ 2

(4 5 4) + (1 1 1)t
(3 4 3) + (1 1 1)t
(2 6 2) + (1 1 1)t

,

Table 4: The d = 3 regular triple palindrome family in bases b, b+ 1, b+ 2.

where

f(b) = f(8 + 2t) = 178, 373, 676, 1111, 1702, 2473, 3448, 4651, 6106, 7837, 9868, . . . .

Recall the normal form families n1 = n1(x) and n2 = n2(x, y) from Theorem 2.14. Notice
that the family n2(t+ 2, t) is equivalent to the family from Table 4.

In other words, the intersection of the family n2(x, y) in bases b, b + 1 with the family
n2(x, y) in bases b + 1, b + 2 is the family n2(t + 2, t) in bases b, b + 1, b + 2. Similarly,
intersecting the family n1(x) in bases b, b + 1 with the family n1(x) in bases b + 1, b + 2 is
just a single non-family example n1(2) = 300 in bases 7, 8, 9.

We can reduce double consecutive palindrome families (k = 2) to triple consecutive
palindrome families (k = 3) for other cases of digits d in a similar fashion.

That is, d = 3 and d = 5 families from Theorem 2.18 follow from Theorem 2.14 and
Theorem 2.16, respectively. The d = 7 families from Theorem 2.18 follow from the reduction
of d = 7 solutions to systems from Corollary 2.9.
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Note that the d = 7 digit case was also independently solved by Alekseyev (see [2]). The
seven digit families from Theorem 2.18 can be rewritten as:

(d = 7) 2− periodicf(b)

b = 74 + 2t f(b) = 1
2
(6 + 25b+ 55b2 + 73b3 + 55b4 + 25b5 + 7b6 + b7)

b+ 0
b+ 1
b+ 2

(40 49 64 73 64 49 40) + (1 1 1 1 1 1 1)t
(37 39 37 36 37 39 37) + (1 1 1 1 1 1 1)t
(34 50 10 74 10 50 34) + (1 1 1 1 1 1 1)t

(d = 7) 6− periodicf(b)'s

b = 56 + 6t f(b) = 1
6
(4 + 25b+ 55b2 + 73b3 + 55b4 + 25b5 + 7b6 + b7)

b+ 0
b+ 1
b+ 2

(10 32 18 40 18 32 10) + (1 3 1 3 1 3 1)t
(9 29 9 28 9 29 9) + (1 3 1 3 1 3 1)t
(8 33 0 41 0 33 8) + (1 3 1 3 1 3 1)t

b = 173 + 6t f(b) = 1
6
(28 + 94b+ 175b2 + 217b3 + 175b4 + 91b5 + 28b6 + 4b7)

b+ 0
b+ 1
b+ 2

(120 15 58 36 58 15 120) + (4 0 1 0 1 0 4)t
(116 1 29 1 29 1 116) + (4 0 1 0 1 0 4)t
(112 15 0 36 0 15 112) + (4 0 1 0 1 0 4)t

b = 278 + 6t f(b) = 1
6
(32 + 125b+ 275b2 + 365b3 + 275b4 + 125b5 + 35b6 + 5b7)

b+ 0
b+ 1
b+ 2

(237 159 277 199 277 159 237) + (5 3 5 3 5 3 5)t
(232 142 232 137 232 142 232) + (5 3 5 3 5 3 5)t
(227 160 187 200 187 160 227) + (5 3 5 3 5 3 5)t

.

(d = 7) 12− periodicf(b)'s

b = 37 + 12t f(b) = 1
12
(10 + 68b+ 193b2 + 269b3 + 187b4 + 71b5 + 16b6 + 2b7)

b+ 0
b+ 1
b+ 2

(7 24 31 22 31 24 7) + (2 6 5 0 5 6 2)t
(6 20 15 36 15 20 6) + (2 6 5 12 5 6 2)t
(5 23 6 14 6 23 5) + (2 6 5 0 5 6 2)t

b = 117 + 12t f(b) = 1
12
(66 + 256b+ 543b2 + 703b3 + 537b4 + 253b5 + 72b6 + 10b7)

b+ 0
b+ 1
b+ 2

(103 79 113 58 113 79 103) + (10 6 7 0 7 6 10)t
(98 61 68 117 68 61 98) + (10 6 7 12 7 6 10)t
(93 78 30 50 30 78 93) + (10 6 7 0 7 6 10)t

b = 289 + 12t f(b) = 1
12
(10 + 80b+ 283b2 + 419b3 + 277b4 + 89b5 + 16b6 + 2b7)

b+ 0
b+ 1
b+ 2

(49 151 288 34 288 151 49) + (2 6 11 0 11 6 2)t
(48 147 265 285 265 147 48) + (2 6 11 12 11 6 2)t
(47 150 249 26 249 150 47) + (2 6 11 0 11 6 2)t

Table 5: d = 7 regular triple palindrome families in bases b, b+ 1, b+ 2.

For example, the smallest term of the greatest d = 7 regular triple palindrome family is
n = f(289 + 12 · 0) = 28854914566144178.

The smallest (overall) d = 7 regular triple palindrome does not belong to any of the seven
families given in Table 5. Instead, it is one of the twelve d = 7 non-family examples and
equals 3360633.
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2.3.2 Long digit cases

A regular triple palindrome is �long� if it is not �short�. That is, it has d ≥ 9 digits.
Unexpectedly to us, it appears that long digit cases of regular triple palindromes do not
exist. We would like to thank Alekseyev for verifying this for d = 9, 11, 13. We believe this
is also in the case for all d ≥ 15.

We introduce the idea of a period. We say that a regular triple palindrome in number
bases b, b+ 1, b+ 2 belongs to a period p (in�nite) family of normal forms if b = b0 + pt for
some constants b0, p and t ∈ N0. In Theorem 2.18 (on short palindromes), we can see that
periods are either 2, 4, 6 or 12. Additionally, the greatest b0 among families from Theorem
2.18 is b0 = 289. One would expect that neither the p nor the b0 can be overly large.

It is possible to computationally set lower bounds on period p ≥ p0 and b0. We observe
p0 consecutive number bases greater than b0 and solve systems from Corollary 2.9 for all d
digit double palindromes in those speci�c bases, one �xed base at a time.

We reduce the obtained double palindromes to triple palindromes. If there are no triple
palindromes, then all (in�nite) families either appear after b0 or have periods greater than
p0 or do not exist.

For example, we obtained that for d = 15, 17, 19 the smallest (in�nite) family either
appears at b0 > 1012 or has p0 > 1000 or does not exist. Its existence seems highly unlikely
when we compare p and b0 to periods and bases of short families from Theorem 2.18.

Maybe it is possible to establish theoretical upper bounds on p0, b0. This would allow us
to computationally prove that a given (long) d digit case has at most �nitely many regular
triple palindromes, by improving the lower bounds. However, in this way one could resolve
only �nitely many cases of d.

To prove that d ≥ 9 digit numbers (in the corresponding number bases) cannot be regular
triple palindromes, remains an open problem. Our conjecture is:

Conjecture 2.19 (Long regular triple palindromes cannot exist). If the number n ∈ N is a

d ≥ 9 digit regular double palindrome in number bases b, b+1, then it cannot be palindromic

in number bases b− 1, b+ 2.

This was veri�ed computationally for d = 9, 11, 13 thanks to Alekseyev. It remains to
consider the case d ≥ 15. If this conjecture is true, then we have found all regular triple
palindromes as given in Theorem 2.18. It can be shown that none of examples from Theorem
2.18 can be palindromic in the fourth consecutive number base.

Therefore, the conjecture would imply that the consecutive palindromes in k ≥ 4 consec-
utive number bases cannot be regular. That is, if they exist, they must be irregular. Recall
the de�nition that unlike regular consecutive palindromes, irregular consecutive palindromes
do not have the same number of digits d in all consecutive palindromic number bases.
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2.4 Four or more number bases

In this chapter, we discuss the regular palindromes in four consecutive number bases, as
well as the possibility of irregular examples. We would argue that they do not exist. Conjec-
ture 2.19 in the previous chapter would imply that they cannot be regular, and Conjecture
3.1 in the next chapter would imply that they cannot be irregular. If both conjectures are
proven, it would imply that a number cannot be palindromic in four or more consecutive
number bases. To recap, here are the smallest k = 1, 2, 3 examples:

k n palindromic forms

1 3 (1, 1)2
2 10 (1, 0, 1)3 = (2, 2)4
3 178 (4, 5, 4)6 = (3, 4, 3)7 = (2, 6, 2)8
4 ? ?

.

Table 6: The smallest k = 1, 2, 3 consecutive palindromes.

If there is a counterexample to either of those two conjectures, then the smallest k = 4

example would either be regular and have more than 13 digits in corresponding number
bases or be irregular and greater than 1012. Since we do not have any example for k = 4

palindromes, we tried computationally searching for �almost-(k = 4) palindromes�. That is,
numbers that are palindromic in b, b+3 bases and in either the b+1 base or the b+2 base.
The d > 3 �near examples� we could �nd are:

1111 = (1, 1, 1, 1)10 =(7, 8, 7)12 =(6, 7, 6)13

712410 = (10, 13, 14, 13, 10)16 =(6, 14, 2, 14, 6)18 =(5, 8, 16, 8, 5)19

1241507 = (14, 14, 11, 14, 14)17 =(11, 14, 15, 14, 11)18 =(7, 15, 3, 15, 7)20

.

One can see only one irregular d = (4, 3, 3) example, and two regular d = 5 examples.
But we already knew that short (d ≤ 7) consecutive palindromes cannot be palindromic in
four consecutive number bases (write normal forms from Theorem 2.18 and Theorem 3.2 in
the fourth consecutive base).

That is, not only we do not have any k = 4 examples, we also could not �nd any
meaningful �near-(k = 4) examples� either.

All results known so far motivate the conjecture:

Conjecture 2.20 (Quadruple and beyond consecutive palindromes). A positive integer can-

not be palindromic in four or more consecutive number bases.

To resolve this, it remains to prove Conjectures 2.19, 3.1. In the following chapter, we
discuss irregular consecutive palindromes and state the second conjecture.

Alternatively, the problem can also be settled if one can �nd all �near examples�: numbers
palindromic in 3 out of 4 consecutive number bases.
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3 Irregular consecutive palindromes

According to De�nition 1.8, a consecutive palindrome is irregular if it does not have an
equal number of digits in its consecutive number bases. We will say that it is a d digit
example if it has d digits in the smallest number base b, out of the consecutive number
bases b, b + 1, . . . , b + k − 1. To �nd all d digit examples for some �xed digit case, we can
solve systems similar to those presented in the chapter about regular double palindromes.
The only di�erence is that we now have to consider multiple cases of digit tuples. There is
nothing signi�cantly new about this process compared to the regular palindromes, so we will
just list our results below.

The irregular double palindromes are very rare compared to regular palindromes. Up
to 1012, we computationally con�rmed that there are 74 irregular double palindromes. The
terms are listed in the OEIS sequence A327810.

But, none of them extend to a third consecutive number base. In other words, we do
not know if an irregular palindrome can be palindromic in three or more number bases. It
could be that the smallest example is simply very large. Regardless, we state the problem
of irregular palindromes as a conjecture:

Conjecture 3.1 (Irregular consecutive palindromes). If the number n ∈ N is a irregular

double palindrome in number bases b, b + 1, then it cannot be palindromic in number bases

b− 1, b+ 2.

This means that, whether or not n ∈ N can be irregularly palindromic in three or more
consecutive number bases remains an open problem.

We can con�rm that for small cases of digits. In contrast to Theorem 2.18 giving all
short regular palindromes, here we give all short irregular palindromes.

Theorem 3.2 (Short irregular palindromes). The number n ∈ N is a d ≤ 7 digit irregular

double palindrome in bases b, b+1 if and only if it belongs to one of the following 11 examples

(normal forms):

10 = (1, 0, 1)3 = (2, 2)4
130 = (1, 1, 2, 1, 1)3 = (2, 0, 0, 2)4
651 = (1, 0, 1, 0, 1)5 = (3, 0, 0, 3)6
2997 = (1, 1, 5, 1, 1)7 = (5, 6, 6, 5)8
6886 = (1, 0, 4, 0, 1)9 = (6, 8, 8, 6)10
9222 = (2, 1, 0, 0, 0, 1, 2)4 = (2, 4, 3, 3, 4, 2)5
26691 = (1, 3, 2, 3, 2, 3, 1)5 = (3, 2, 3, 3, 2, 3)6 .
27741 = (1, 3, 4, 1, 4, 3, 1)5 = (3, 3, 2, 2, 3, 3)6
626626 = (1, 1, 5, 4, 5, 1, 1)9 = (6, 2, 6, 6, 2, 6)10
1798303 = (1, 0, 1, 9, 1, 0, 1)11 = (7, 2, 8, 8, 2, 7)12
1817179 = (1, 0, 3, 1, 3, 0, 1)11 = (7, 3, 7, 7, 3, 7)12

Table 7: All short examples of irregular triple palindromes in bases b, b+ 1.
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You can notice that there are only 1, 4, 6 examples of d = 3, 5, 7 digit irregular consecutive
palindromes, respectively. That is, in contrast to the regular consecutive palindromes which
came in forms of in�nite families, we have only �nitely many irregular examples per digit
case.

Note that Corollary 2.12 that tells us that there are in�nitely many regular double palin-
dromes for any given odd digit case d. Here, we can show that for any given odd digit case
d there are only �nitely many examples of irregular double palindromes.

Theorem 3.3 (see [1]). For every �xed d = 2l+1, l ∈ N odd case of digits, there are at most

�nitely many d digit irregular double palindromes.

The proof relies on the linearization approach given in Subsection 2.1.2. We again ac-
knowledge and thank Alekseyev for suggesting the linearization approach. Here we addition-
ally thank him for presenting the argument, which we will cite below.

Proof:

Let d1 < d2 be digits of the irregular double palindrome in number bases b, b + 1. For an
in�nite set of examples to be possible for some digit case, values of b cannot be bounded. If
d1 − d2 > 1, then the base b normal form represents asymptotically at least b times greater
number than the base b+1 normal form. Therefore, we only need to consider the case when
d1 − d2 = 1.

Due to Lemma 2.2 we can assume that d1 is odd. Let d1 = d = 2l + 1, d2 = d − 1 =

2l, l ∈ N. We have the normal forms

n =
2l+1∑
i=1

aib
2l+1−i =

2l∑
i=1

ci(b+ 1)2l−i

=
l−1∑
i=0

ai(b
i + b2l−i) + alb

l =
l−1∑
i=0

ci((b+ 1)i + (b+ 1)2l−1−i),

where a0 ∈ [1, b−1], c0 ∈ [1, b], ai ∈ [0, b−1] and ci ∈ [0, b], for i ∈ {1, 2, . . . , l}. Applying the
same idea as in the linearization method from Subsection 2.1.2, we obtain a similar system
to (2.8). We are only interested in the following part of it:

a0 = −kd
a1 = −d

2
k0b+ k1b− k0 − d

2
kd ∈ [0, b− 1] ,

c0 = a1 − kdb+ kd−1 ∈ [0, b]

where kd, kd−1, k1 are integers whose bounds depend only on d.
�To keep a1 ∈ [0, b − 1] and c0 ∈ [1, b] for large b, the coe�cients of b in a1 and c0 must

be between 0 and 1. Together with a0 ≥ 1 (i.e. kd ≤ −1) this implies that kd = −1 and the
coe�cient of b in a1 and c0 equal 1 and 0, respectively. Then, however, a1 is a half-integer,
which is impossible. Thus, an in�nite series of examples does not exist.� − Alekseyev.

We haven't explored the asymptotics of these numbers. In other words, �What is the
greatest d digit irregular consecutive palindrome?� remains an open problem for general d.
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4 Conclusion

Here we will summarize the results given in this paper.

• If n > 6 is strictly non-palindromic, then it must be prime (Proposition 1.5).

• Consecutive palindromes must have an odd number of digits in their corresponding
consecutive number bases (Theorem 2.3).

• Let d > 1 be a �xed odd number. There are at least in�nitely many regular d digit
consecutive palindromes and at most �nitely many irregular d digit consecutive palin-
dromes (Corollary 2.12 and Theorem 3.3).

• Searching for consecutive palindromes when the number of digits is �xed is equivalent
to solving �nitely many systems of linear Diophantine equations. We characterize all
regular d = 3, 5 double palindromes (Theorems 2.14, 2.16) and all regular d = 3, 5, 7

triple palindromes (Theorem 2.18). We (re)compute all irregular palindromes up to
1012 and con�rm the �rst 74 terms listed in the OEIS sequence A327810.

Additionally, we provide arguments and state the following conjectures:

• All irregular consecutive palindromes are double (k = 2) (Conjecture 3.1).

• The double consecutive palindromes are not �nice enough� to be given a closed form.

• The triple consecutive palindromes have all been found and are given in Theorem 2.18.

• The quadruple (or more) consecutive palindromes do not exist (Conjecture 2.20).

Problems we haven't explored, among other things, include the asymptotics of greatest
irregular consecutive palindromes per digit case and �nding in�nite families of regular double
palindromes that span across all digit cases (Problem 2.13).

Finally, we have learned a lot about consecutive palindromes. But, the main question
behind this topic remains unsolved, i.e.,

�Can a positive integer be palindromic in more than three consecutive number bases?�

The question was originally asked in early 2017 (by the author of this paper), as far as we
(the author) know(s) (see [16]). Of course, as stated in the de�nitions, trivial solutions like
using one-digit numbers in corresponding number bases, are not being considered.
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