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Frog jumping problem on simple graphs

Summary

Frog jumping problem is played on a simple connected graph. Initially, one frog is placed
on each vertex of a graph and the goal is to move all frogs to a single vertex. If there are m
frogs on a vertex u, then it is allowed to move them on a vertex v if and only if v and v are
connected by a shortest path consisted of m edges.

We solve the problem for path graphs, star graphs, starfish graphs, and a subset of
dandelion graphs. We conjecture that all vertices of a sufficiently large complete binary tree
are solvable. The problem is a generalization of the “Frog jumping” problem by G. Hamilton.

Keywords

Graph, simple graph, connected graph, path graph, star graph, starfish graph, dandelion

graph, binary tree, spanning tree



Problem skakanja Zaba na jednostavnim grafovima

Sazetak

Problem skakanja zaba se postavlja na jednostavnom povezanom grafu. Na pocetku se
postavlja jedna zaba na svaki vrh, s ciljem da se sve zabe u konacnici sretnu u istom vrhu.
Pomicanje svih x zaba s jednog vrha na drugi je dozvoljeno ako i samo ako su izabrani vrhovi
neprazni i povezani putem koji se sastoji od z razli¢itih bridova.

Rjesavamo problem na putevima, zvijezdama, zvjezdaca grafovima, te na podskupu
maslacak grafova. Nagadamo da su svi vrhovi na svim dovoljno velikim potpunim binarnim

stablima rjesivi. Ovaj problem je generalizacija problema “Frog jumping” od G. Hamilton.

Kljucne rijeci

Graf, jednostavan graf, povezan graf, put graf, zvijezda graf, zvjezdaca graf, maslacak

graf, binarno stablo, razapinjuée stablo
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Introduction

Frog jumping problem is a generalization of the “Frog jumping”. The original problem was
featured in a Youtube video by Numberphile, starring G. Hamilton (see [4]). We contacted
G. Hamilton, which led to online presentations of the generalization (see [2, 3]).

1 Frog jumping problem

Given a simple connected graph, the goal of the problem is to have all frogs meet at a
single vertex. Initially, every vertex has one frog. All m frogs placed at vertex u can jump
to vertex v if and only if both vertices contain at least one frog and there is a shortest path
between u and v consisting of m edges. If a sequence of jumps exists such that all frogs end
up on a single vertex, then the meeting can be successfully held. Such a vertex is called
“solvable”; a “lazy toad” or “lazy” because the frog in that vertex has never jumped.

1.1 Definitions and notation

We introduce the following definitions to formalize the problem.

Definition 1.1. Let G be a simple connected graph with vertex set V.
A problem state is a vertez-weighted graph G/ where f : V — Z* assigns a nonnegative

integer weight to each vertex such that Z f(v) =|V].
veV
An initial problem state is a problem state G such that Yv € V, fo(v) = 1.

A solved problem state in vertez v € V is a problem state G'= such that f.(v) = |V|.
In this case, vertex v is called a solved vertex.

In the above definition, f(v) stands for the number of frogs placed on a vertex v € V.

Definition 1.2. Let G/, G" be two problem states on graph G with vertices in V, edges in E.
We say that G" is reachable from G' and write G' — G" if there ewists vertices v,w € V
such that:

1. Yu € V\ {v,w}, f(u) = h(u).

2. h(v) = 0, h(w) = f(v) + f(w) and f(v) # 0, f(w) # 0.

3. There exists a path from v to w with exactly f(v) unique edges ey, ... ez € E. We
write f(v) € d(v,w), where d is the set of edge distances along any path from v to w.

We write G = Gf (v — w) or G* = G¥ (v 79, w) to emphasise the value of f(v).
If G is acyclic, then |d(v,w)| = 1. For example, if G is a tree graph.

Definition 1.3. Let G be a simple connected graph with vertices in V.

Let Gfo — GI' — ... — G+ be a sequence of reachable problem states ending in a solved
problem state in vertex v € V. We call these states solvable states. If G0 is an initial
problem state, then v is a solvable vertex and the sequence is a solution sequence.



The question we can now ask is: “Given a simple connected graph G, which vertices
are solvable?”. When we solve a graph (G, we represent solution sequences with “vertex to
vertex” transitions.

Denote transitions between reachable states over some vertices v, w as follows.

e Write (v — w) for a simple transition. To emphasize the value, write (v 1o, w).

e A chained transition sequence (v; — wvy)(vy — wv3)(vs — wvy)... is written in short

notation as (v; — vy = v3 = vy = ...).

e A concentrated transition sequence (v; — vg)(ve — vg)(v3 — 1) . .. is written in short

notation as ({vq,ve,v3...} = vg).

For example, given a simple connected graph G ~ D, o with vertices V' = {1,2,3,4,5}
and edges F = {{1,2},{2,3},{2,4},{4,5}}, we determine which vertices are solvable.

1
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Image 1: Example graph G isomorphic to a dandelion Dj 5 graph.

The vertices 1 and 3 are symmetric, so if one is solvable, so is the other. To show that
vertex 1 is solvable, find a solution sequence that starts with the initial problem state G0
and ends in a solved problem state G¥¢ whose solved vertex is 1. One such solution sequence
is:

G =GP253)35 650U 31)=6¢P25331)64251).

Similarly, one possible solution sequence for vertex 2 is:

Gl =Gh(1352)352)455)(5232) =60{1,3} 2524552 2).
Last but not least, a solution sequence for vertex 5 is:

G =cP25 11533355 =6P21233235)45).

On the other hand, the problem is not solvable in vertex 4. Since the graph G has only
five vertices, this can be shown by exhausting all sequences of reachable problem states.

Alternatively, let v,w € V and observe that the distance from vertex 4 to any other
vertex is at most 2. Therefore, a solution sequence can contain only (v L w), (v 2 4)
transitions. Since 1 and 3 are at a distance of 2, they require one (v 2 4) transition. But,
two (v 2 4) transitions are impossible as their only neighbor is shared.



1.2 Algorithmic approach and complexity

By definition, we can solve the problem recursively as follows. The graph G with n = |V/|
vertices is solvable in vertex v € V' if and only if there exists a partition {Vi,V,,... Vi } of
vertices V' \ {v} and vertices v} € V;,i = 1,..., k with the following properties:

1. Vi, |Vi| € d(v,v}).

0, vEV;
2. Vi, problem state G/i, fi(v) = { 1, v e V;\ {vf}, is solvable in v} € V.
VI-Wil, v=1;

We can apply this recursively to partition parts, parts of partition parts, and so on.
Essentially, we go backwards from the last to the first transitions.

That is, we start by computing all the distance sets d. Then the problem is to construct a
directed spanning tree. We begin at the target vertex v and proceed to follow the appropriate
distances. In the worst case, we exhaust all relevant partitions.

Problems involving partitioning graphs into subgraphs of certain types, such as triangles
or isomorphic subgraphs, tend to be exponential (see [1]). Therefore, it is likely that there
is no efficient algorithm for general graphs.

For example, we can solve all tree graphs with less than 15 vertices. The following table
shows the number of graphs, where the rows and columns denote the number of vertices and

unsolvable vertices, respectively.

6 1 2 3 4 b5 6 7 8 9 10 11 12 13 14
1] 1 0
2|1 0 0
3|1 0 0 0
411 0 0 1 0
5| 1 1 0 0 1 0
6 2 1 1 0 0 2 0
7 3 2 ) 1 0 2 2 0
8| 6 D 4 1 0 1 1 3 2
g 12 3 6 8 1 0o 3 0 6 3
10126 23 13 15 9 0 2 0 1 12 5
1159 4 42 24 14 8 3 5 3 3 19 11
12 (141 115 8 57 49 21 6 8 6 & 11 28 19
13 (348 270 201 132 95 59 33 16 19 6 9 11 61 41
14 | 911 647 464 307 218 149 96 47 35 29 22 21 16 115 82

Table 1: Results on the solvability of the vertices of tree graphs with n < 15 vertices.

In the following section, we find solution sequences for specific classes of graphs. These

strategies can be applied to similar subgraphs in other graphs.



2 Simple tree graph classes

We attempt to solve the problem on four simple classes of simple connected tree graphs.

However, some subcases remain unsolved.

Definition 2.1 (see [12]). A simple graph, also called a strict graph, is an unweighted,

undirected graph that contains no graph loops or multiple edges.

We examine the problem on path P,, star S, starfish S,, , and dandelion D,,,, graphs.

@ ®
Q
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Image 2: Illustrations of path P;, star Sj, starfish Sg 3, dandelion D7 3.

These graph classes can be described as:

1. Path P, is a tree graph with 2 leaf vertices and n — 2 vertices of degree 2.

2. Star S, is a tree graph with m leaf vertices connected to a center vertex of degree m.
Alternatively, this is a complete bipartite graph K .

3. Starfish S, , consists of m paths P, connected to a center vertex of degree m.

4. Dandelion S, consists of a star S, connected to a path P, via its center vertex.

Note, for example, that S, = Sy, 1, Popny1 = S2, and D,y 1 = Sppyq. All four classes are
classes of tree graphs. A tree graph is a simple connected graph that does not contain cycles
(is acyclic).

A similar definition of a dandelion D,,, graph comes from M. Krnc and R. Skrekovski
(see [5]). We have not found any reference that uses the name “starfish” for S, ,.

A generalization involving all four classes can be defined as S,,,), where (a,,) is a finite

sequence of nonnegative integers. Then S(q,,) consists of paths F,,, ..., Py, joined in a vertex
of degree m. For example, S,, , = S(n, ...,n)- These graphs are also called “starlike”.
———

A hard generalization would be to consider all tree graphs (see [8]). Individual examples
can be found in a mathpickle.com article by G. Hamilton (see [2]).

In addition to these four classes of trees, we also observe the problem on complete binary
tree graphs T}, of height h, consisting of |V (T},)| = 2! — 1 vertices.



2.1 Solving the problem on Path P, graphs

Path P, graphs were solved by G. Hamilton in 2017 (see [4]). That is, this case is
equivalent to the original “Frog jumping” or “Lazy toad” problem.

It is not difficult to show that all vertices of a path P, are solvable. It is possible to use
a simple strategy that alternates “left” and “right” jumps.

Lemma 2.2. Leaf vertices of a path P, are solvable for every n € N.

Proof:
If n is odd, let vertices be V = {—k,—k+1,...,-1,0,1,...,k — 1,k}, k = 2. Then we
have the following solution sequences:

GF =Gho b +1 513 +24 25 2L
GE g s 1553535, 25 48,

Otherwise, if n is even, let the vertices be V = {-k,—-k+1,...,-1,1,...,k—1,k}, k= 3.

I )

Then we have the following solution sequences:

GF =Gh(+1H 15 428 24 435 2L ).

n—1

G =Gh(—1 5 415235 9535, 20 4,

That is, starting from the center, the strategy is to alternate left and right jumps. O

Theorem 2.3. All vertices of a path P, are solvable for any n € N.

Proof:

Let V = {1,2,3,...,n} be vertices of a path P,. Note that for each vertex a € V, path
subgraphs P,, P,_.11 C P, induced by the vertices {1,2,3,...,a} and {a,a+1,a+2,...,n}
are solvable in the common vertex a, according to Lemma 2.2.

Therefore, P, is solvable in a. Since a € V' is arbitrary, every vertex of P, is solvable. [J

Since adding more edges to a graph can only increase the number of reachable problem

states, we have the following corollary.
Corollary 2.4. All vertices of a graph G containing a Hamiltonian path are solvable.

The above corollary implies that, for example, all vertices of a cycle C,, and all vertices
of a complete graph K,, are solvable.

More generally, note that graphs whose spanning trees are solvable in every vertex are
solvable in every vertex.

A possible generalization would be to connect a leaf vertex to each vertex of a path P,.
Then, we get a “centipede” ¢, graph with [V (c,)| = 2n vertices (see [11]). Tt is not difficult
to show that all vertices of every centipede ¢, graph are solvable. Indeed, a similar strategy

as in the previous theorem can be used.



2.2 Solving the problem on Star S,, graphs

We can assume m > 3. Otherwise, we have S, ~ P,, P3 for m = 1, 2, respectively.
Theorem 2.5. In a star S,,,m > 3, only the center vertex of degree m is solvable.

Proof:
Solving a star S,, with vertices V' ={0,1,2,...,m} in the center vertex 0 is simple:

G- =G({1,2,3,...,m} = 0).

Otherwise, note that the distance from one leaf vertex u € V to every other leaf vertex
v € V is equal to the diameter 2 of the graph. But the leaf vertices are not connected to
each other. Therefore, we need m — 1 transitions (v 2 u). This is a contradiction, because

2m — 2 > m. As a result, leaf vertices are not solvable. O

Now we are ready to move on to the starfish S, ,, graphs.

2.3 Solving the problem on Starfish 5,,, graphs

A few examples and strategies can be found in a mathpickle.com article by G. Hamilton
(see [3]). Given a starfish S, ,,, we can assume m > 3 and n > 2. Let vy be the center vertex
of degree m. We show that all vertices are solvable.

Lemma 2.6. In a starfish Sy, ,, the center vertex of degree m is solvable.

Proof:
Consider m path subgraphs P, of Sy, , that do not share any vertices except the vertex
vg. According to Lemma 2.2, every such subgraph is solvable in vg. Consequently, a starfish

Sm.n is solvable in the center vertex vy. ]

It remains to solve non-center vertices. Due to symmetry, we only need to consider
finding up to n solution sequences for a given starfish S, ,.

Consider m disjoint path subgraphs P! i =1,2,...,m of S, that are connected to the
center vertex vy. Such subgraph is referred to as a “tentacle”.

Let v, € V(P!) be a vertex at d € {1,2,...,n — 1} edges distance from the vertex v.

Lemma 2.7. In a starfish Sy, ,,n > 2, vertices of degree 2 are solvable.

Proof:
For m € {1,2} see the Theorem 2.3. Otherwise, proceed as follows:

1. Solve tentacles P’,i =1,2,...,m — 1 in the vertex v}.
2. Apply transitions (vj = v™ ).
3. Solve subgraph (P* + vp) in v ,.
Steps 1. and 3. are solvable due to the Theorem 2.3. O

To solve the leaf vertices, we use two strategies. For n = 2, we solve every other tentacle

using its neighbors. Otherwise, we use a similar strategy to solve three tentacles at a time.



Lemma 2.8. In a starfish Sy, n,n > 2, leaf vertices are solvable.

Proof:
For m € {1,2} see the Theorem 2.3. Otherwise, it is sufficient to show that the vertex v} is
solvable. Let I(xz) = x except I(1) =m — 1+ (m mod 2). If n = 2, proceed as follows:

1. Apply transitions (v2* s vfk — v{(%_l) = vgt! = v) forall k=1,2,..., [ 2L

2. If m is odd, apply (v] LoD vs). Otherwise, apply (v, LN o 2 vl 2 oy 5 L)

If == 3, Tar all B =152, .55, L J proceed as follows:

1. Solve tentacle P31 in v3*7" and apply (v357" 2 v3% 2 1),

2. Solve (P3* — v3%) in v3* |, P3%+1 in v3**1 and apply (v3F1 D 3%, = vl).

n

The steps are solvable due to the Theorem 2.3. Consequently, we are left with 0,1 or 2
additional tentacles beside the P! tentacle. In the case of 0 or 1, the remaining tentacles
form a path subgraph to which we apply the Theorem 2.3. Otherwise, we are left with 2 of
additional tentacles. In this case, proceed as follows:

1. Solve subgraph (P! + v + v"!) in vertex v!.

2. Solve (P™t — ¢ 1) in 5!, P™ in v{* and apply (v]* = v e, vl).

n—1>

The steps are solvable due to the Theorem 2.3. O

Image 3: Reduction of 3 tentacles by moving all their frogs to the v} leaf.

Theorem 2.9. In a starfish Sy, ,,,n > 2, all vertices are solvable.

Theorem 2.9 is a consequence of Lemmas 2.6, 2.7, 2.8. A natural generalization is to
consider tentacles of different lengths. This is solved in the following subsection.



2.4 Solving the problem on generalized S(,,,) graphs

Let S(,,) be a graph consisting of paths P, , Py, ..., F,, called “tentacles”. They are
connected in the vertex vy of degree m, where (a,,) is a finite sequence of positive integers.
Due to the same arguments as in Lemma 2.6, these graphs are solvable in vertex vy.

The “balanced” case of S(g,,), where a; = ay = --- = a,,, = n, is solvable in every vertex
according to the Theorem 2.9.

It is not hard to see that the “unbalanced” case, where a; # as # ... # an, is also
solvable in every vertex. We formulate this in the following theorem.

Theorem 2.10. Generalized S(,,,) graph is solvable in every vertex if a1 # az # ... # Q.

Proof:

The proof is inductive. The assumption is that S(,,,) is solvable in every vertex. We need to

show that S, )
Take Gpy1 > A > @y > -+ > ay > 1 without loss of generality. If (m + 1) € {1, 2},

apply the Theorem 2.3. Otherwise, we can use the following result.

is solvable in every vertex for every a1 € N.

If a; > aj, all frogs from the tentacle P, can be moved to any vertex of the tentacle Py,
due to the steps used in Lemma 2.7. We refer to this strategy as “reducing the tentacle F,,
into a vertex of the tentacle F,;.”

The graph G = 5
Gy ~ P,, ... To solve G in the vertex v € V(G,), first solve G in v using the assumption.
If v # vy, reduce the tentacle Gy ~ Otherwise, apply the Theorem 2.3 to (G +vp) in

v = vp. Remains to solve G in vertices V(Gy) = {vy, vs, ..., Vq,.,, }, Where vy is at distance

(am+1) €an be decomposed into two disjoint subgraphs G = S(,,,) and

a+1

d from vertex vy. Let vg € V(G2) be the vertex we want to solve.

Start by reducing all possible tentacles P,, € GG} into the vertex v;. If we have reduced
all tentacles, we are done due to the Theorem 2.3 on (G2 4 vg) in v4. Otherwise, we are left
with tentacles P,,,..., P, withd > ¢ > ¢y > -+ > ¢, > 1. When r = 1 we are done due to
the Theorem 2.3 on (G5 + vy + P.,) in vg. Therefore, r > 2. Let k be the largest index such
that s = Zle ¢ < d. If k=r, apply the following procedure'

1. Reduce the tentacles F,,,..., P,

e, tO the vertex Ul ) of the shortest tentacle 3

(cx)

2. Solve (P, +vg+vi+---+v4_s,) in v; *’ using the Theorem 2.3 and apply (v; (e

—> ’Ud)

3. Solve the remaining part of G5 using the Theorem 2.3.
If k<7, then sy =d+1t,t €N, ¢ > ¢, and apply the following procedure first:

1. Reduce the tentacles P, ..., P, to the vertex U(Ck“ of the shorter tentacle P,

Ck+1°
(Ck+1 (Ck+1) d+t
2. Solve P, in v and apply the transition (v; — vg).
3. Repeat steps 1. and 2. for the remaining tentacles until k = r.
This completes the inductive argument. O

It remains to consider the case that S, is neither “balanced” nor “unbalanced”. It is

possible to prove a stronger alternative to the previous theorem.



We will need two new lemmas. First, we need to introduce “waterlogged” stars Sy, ,,,n >

2. Let vy be the central vertex of a star Sy, graph. A waterlogged star 5y, ,, is solvable in
a vertex v # v, if the problem state G/*,

1, U = vy
f*(u): ’V|_17 u=v ,
0, else

on a star S, », is reachable from the initial problem state. Note that G+ is the same as the
solved problem state, except that we are ignoring the frog on the central vertex vy.

Lemma 2.11. In a waterlogged star Sy, ,m > 4,n > 2, all vertices are solvable.

Proof:

Given the proof of Lemma 2.7, we need to consider only the leaf vertices. Let the vertex
v, € V(P!) be at d edges distance from the vertex vy. We start by considering the first three
tentacles P!, P? and P3. Keeping in mind the Theorem 2.3, apply the following procedure:

1. Solve P! in vertex v} _;, (v2 + -+ 4 v2) in vertex v2 and (v3 + --- + v3) in vertex v3.

1 2 -
2. Apply (vi_, & o? MARNY 3 2% 02). Let the remaining vertex v* = v} be “an anchor”.

If P, P1,...,P,r > 2 tentacles are left, apply the following until only one is left:
1. Solve P! in vertex v} ; and (vit* 4 --- 4+ %) in vertex vit!.

2. Apply (v!_; 5 v* ! gt 20 2) and note the new anchor v* = vi*!,

When only one P, tentacle remains, solve it in vertex v/ _, and apply (v]_, = v* Lai o)
The solution sequence in the leaf vertex v2 is now complete. O

Lemma 2.12. Generalized S(,,,), a1 = -+ = Q1 = @ > 2, a,, > 2av 18 solvable in the vertex
vor € V(P,,)) at 2a edges distance from the vertex vy.

Proof:
We solve paths using the Theorem 2.3. Start by solving the path (vgy +von, 4+ ... ) in vy
Use the following () procedure to eliminate groups of 6 paths P*, ..., P* one by one:

«

k

1. Solve two paths in v , two paths in v and the last two paths in vE minus @5

a1>
2. Apply (v | & ofs —>?J —>v —a>v§;’”)(a1—> —>U —H} —>v“’”)

If 6 | m — 1, solve (vg + -+ +v3™). Otherwise, we are left with » € {1,2,3,4,5} paths. If
r = 1, then the remaining subgraph is a path. Otherwise, we can reduce it to a path:
k:g a+1 A,

o r € {2,3}: Solve (P +vy+ P*) in ¥ and apply (v;? —= vgr). If r = 3, it remains

201
to solve P¥s, Pi™ |, in v¥s  v8™ and to apply (v | & vim 25 48m),

e r € {4,5}: Use (%) on the first four paths ky, k3, k5, kg. To eliminate the remaining
vertices, use additional vertices (vi™ + vg™ + - -+ 4+ v{™),t < 2« as needed.

0
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’ .
Image 4: Reduction of 6 tentacles by moving all their frogs to the vé‘i{") vertex.
Theorem 2.13. Generalized S(,,,) graph is solvable in every vertex if ai, aq, ..., ay > 1.

Proof:
We solve paths using the Theorem 2.3. The problem is to solve the graph in an arbitrary
vertex vY € V(PP) at d edges distance from the vertex v.

Start by eliminating paths longer than d. That is, without loss of generality, consider
only paths P, ,..., P, such that d > ¢ > ¢o > --- > ¢,. Find the largest k such that
Sk Zle ¢; < d. Then, the strategy from the proof of the Theorem 2.10 can be used to
eliminate groups of paths, also called tentacles. This works as long as ¢ > ciyq or 30 > 1
¢k > ckyq. 1t also works when d # si, due to the “leaf problem”. In other words, two equal
tentacles can be combined in any non-leaf vertex, as seen in Lemma 2.7.

Otherwise, ¢y = cfy1 =+ =c¢, = a and d = o + t, where t = s — ;. If t = 0, then we
have a subgraph H ~ Sg. o which is solvable in v4 = v, due to the Theorem 2.9. Moreover,
t & (0,a) due to d > cx—1 > ci. It follows that t > a.

Let R=r—k+12>2 If Re€ {23}, then we can modify the strategy to use one less
vertex v to avoid the leaf problem. This is not a problem because the remaining subgraph is
a path or we can apply ({vg, v1, ..., 01} Y v?)(Py = vt B, v4) to reduce the remaining
subgraph to a path. It follows that R > 4.

Ift > 2a, then d > 3a and we can use Lemma 2.11 to eliminate groups of 4 or more
tentacles at a time. Otherwise, we can eliminate smaller groups of tentacles except when ¢
is a multiple of a;, because of the leaf problem. In other words: If £ > «, then we can reduce
R to R’ > 4 such that R'a < d.

Now we can modify the strategy to use one less vertex vj to avoid the leaf problem. This
is not a problem because we can reduce the remaining subgraph to a path. We do this by
solving the subgraph T' ~ S(, ) in the vertex vy and applying (vy — vq). This is possible
because (R —2)a+1 < d.

It remains to consider ¢t = a.. This case was solved by Lemma 2.12. 0

It remains to consider the generalized S,,,) containing indices 7 € I such that a; = 1.

The subcage a4 = ¢+ = Oy = 1, Gyi = B, S( D, ,, is examined in the next section.

~Y
am41) —
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3 Dandelion D,,, graphs

We show that a dandelion D, ,,, m,n > 2 is solvable in every vertex if n is large enough.
We have partially solved the other case.
Recall that a dandelion D,, ,, consists of a star S,, and a path P, connected at the center

vertex of the star. From now on, we use the following notation:

e Let leaf vertices of the star S, = S,, subgraph of D, ,, be in V; = {51, 5s,...,5,,} and
let vy be the center vertex of that subgraph. Let ngb) represent the subgraph induced
by {Sm Sat1 .-+ 5561, sb} C ‘/:9

e Let vertices of the path P, = P, subgraph of D,,, be in V, = {p1,ps,...,pn} such
that p;,7 € {1,...,n} is at 7 edges distance from vy. Let P(/a,b) represent the subgraph
induced by {ByPors -+ +B2505t C Vi

e When we use the Theorem 2.3 to solve subgraphs P, ;) in p;, we write (P, ; (i) = ...).
When we use the Theorem 2.5 to solve the subgraph S, ;) in vy, we write (5(, ;) = ...).

Solving the vertex vy is trivial.
Lemma 3.1. In a dandelion D, ,,, the vertex of degree m + 1 is solvable.

Proof:

According to the Theorem 2.5 we can solve the star S, subgraph in its central vertex vy.
According to Lemma 2.2 we can solve the path P, subgraph in its leaf vertex vy. Therefore,
a dandelion D,, , is solvable in the vertex vy of degree m + 1. O

It remains to solve the vertices in 5] and P). Looking at the vertices in the path
subgraph, it is not hard to see that we only need to consider the P(’1 ) subgraph.

Theorem 3.2. In a dandelion Dy, ,,m,n > 2, vertices p;,i € {m+1,m+2,...,n} of the
path P! subgraph are solvable. If m = 2, then p,, is also solvable.

Proof:
For t € Z*, solution sequences can be constructed as follows:

1. Use Lemma 3.1 to solve subgraph (S(, ,,) + F(; ;y) 2 D in vertex vp.

2. Use the Theorem 2.3 to solve subgraph P(,t—i-l,n) 0 P15

3. Apply the final transition (vg i yo ST A
Specially for m = 2, we can have t = —1 by solving the first step in s; instead of in vy
because subgraph SEM) ~ Sy ~ Py is a path to which Theorem 2.3 applies. O

In the following subsection, we solve the leaf vertices of S] subgraph for n > m. Other-
wise, it is not clear how to construct the solution sequences.

In the other subsection, we solve the vertices of P(,Lm) subgraph for n > 2m+3. Otherwise,
it is difficult to find solvable vertices.
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3.1 Solving vertices of Star S|, C D,,, subgraph

In this subsection, we consider leaf vertices. First, we handle the case n > m. It is not

hard to exhaust reachable problem states to verify that three cases (m,n) are not solvable.

Lemma 3.3. In a dandelion D,,,,m > 2,n > m, leaf vertices of the star S;, subgraph are
not solvable if (m,n) € {(3,4), (3,5), (4,6)}.

Proof:
By exhausting all reachable problem states. O

We show that all other cases (n,m),n > m are solvable. Note that S, 5) ~ S» >~ P;. As
a result, it is easy to resolve m = 2.

Lemma 3.4. In a dandelion D;,,n > 2, leaf vertices of the star S, subgraph are solvable.

Proof:

Solution sequences can be constructed as follows:

1. Use the Theorem 2.3 to solve subgraph P

1,n) in vertex p,_1.
2. Apply transitions (v L S1 2 89) and (pn_1 = S2).
J

Since n > m, we can write n = m + t,t € Z*. The following lemma will resolve cases

t € {0,1,2} not covered by previous two lemmas.

Lemma 3.5. In a dandelion D,,,,m > 2,n > m, leaf vertices of the star S, subgraph are
solvable if n=m+t,m >t+ 3,t € Z*.

Proof:

Solution sequences can be constructed as follows:
1. Use Lemma 3.1 to solve subgraph (Sél,m—l) + P(ll,t)) ~ Dy,_1,; in vertex vg.
2. Use the Theorem 2.3 to solve subgraph P(,t—i-l,n—l) ~ P, _1 in vertex p,,_».

3. Apply transitions (pm,—2 s sm) and (vg hikon Pu i B )

0

Note that the previous lemma does not consider the cases m < t + 3,t € Z*. For
t € {0, 1,2} these cases are not solvable unless m = 2, as mentioned in the previous lemmas.
It remains to consider n > m + 3 for m > 3.

To solve the remaining case, the following lemma considers two strategies depending on
whether n is greater than 2m or not. Both are similar to the previous lemma, but use

different groupings of vertices.
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Lemma 3.6. In a dandelion Dy, ,,m > 3,n > m + 3, leaf vertices of S), are solvable.

Proof:
For n > 2m, solution sequences can be constructed as follows:

1. Use Lemma 3.1 to solve subgraph SELm—l) in vertex vg.

2. Use the Theorem 2.3 to solve P(’Lm_l) in pm_o, P/

— in p,, and P(’n_mm) in p,.
3. Apply transitions (vy = Pp — Py, B Sm) and (Pp,_o B, )
Otherwise, for n < 2m, solution sequences can be constructed as follows:

1. Use Lemma 3.1 to solve subgraph 57, ,,,_;y in vertex vy.

2. Use the Theorem 2.3 to solve P(ll,m—l) in pp_m_1 and P(/m+17n) in p,_o.

3. Apply transitions (vy = pm B, S and (By 1 M, P e By

Image 5: Strategies used in Lemma 3.6.

Theorem 3.7. In a dandelion D, ,,n > m, all leaf vertices of the star S,, subgraph are
solvable if and only if (m,n) & {(3,4),(3,5),(4,6)}.

Theorem 3.7 is a consequence of Lemmas 3.3, 3.5, 3.4, 3.6. It remains to consider the
case n < m. This is hard because proving that a solution sequence does not exist is hard.
We state the following problem for n =m — k, k € {1,2,...,m — 2}.

Problem 3.8 (The dandelion leaf problem.). Let My, k € N be the set of all m such that
vertex s € Vy of dandelion Dy, pm—i s solvable. Can we find M, for all k?

The first step in solving the problem would be to find m; = min M. It is not hard to
observe an upper bound.
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Proposition 3.9. It holds that my < 14 and my; < 3my — 2k + 5, Vk € N.

Proof:
If k=1, it is not hard to solve D14 13 in vertex s € V;. WLOG s = s;3, then we can:

1. Apply transitions (5, ;5 20 S prs S s13) and solve P(’577)(6) and Pfg 15(12).

.. 3 4 5 1 2 8 13
2. Apply transitions (pg = p3 — S14 — pa)(p1 — P2 = pa) then (py = p12 — S13).

We can now inductively construct an upper bound for my,,, k € N. Take solution sequence

of D, m,—k solved in s € V;. Remove the transitions (SE k_1) — V0 = Pk — s) and

1,mg—
/

the transition (s; — vg), s; # s for one s; € V. Now define Dy m—k = Dy 3(m—k)+45

mk+1—(k+1):3(mk—k)+4 —— mk+1:3mk—2k‘+5.

We can apply the transitions (SE ) = V0 = DP3(mi—k)+a — s) in place of the

17mk+1_(k+1)_1
removed transitions. It remains to take care of the vertices that were added. Namely, we
need to move frogs from py, —, ..., P3(my—k)+3 to s and a frog from s; to s. This can be done

as follows:

sy my—k my—k+1
1. Apply transitions (F(,, 1o o90m, k1) (2% — k) — Dk ———— Si).

2. Apply transitions (s; i o oy B8, Do ki)

T

s).

; y _
We now have a solution sequence for Dy, ., . = D, mypr—(k—1)- O

3. Apply transitions (Ply(,, k)12.3(me—k)+3)(2(mk — k) +4)

The previous proposition is just a simple upper bound. That is, the exact value of my
could be much smaller. For example, the proposition gives my < 45, but we found my < 32
using a different strategy. We have not been able to find a general strategy for the best
possible upper bound. Therefore, Problem 3.8 remains open.

Image 6: Solution sequence for s;3 vertex of dandelion graph D14 3.
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3.2 Solving vertices of Path P/ C D,,,, subgraph

According to the Theorem 3.2 we need to consider only the P(’Lm) subgraph. Since for
D, we only need to consider whether the vertex p; is solvable or not, we can first solve this

case as a separate theorem.

Theorem 3.10. In a 2-dandelion Dy ,,n > 2, all vertices are solvable if and only if n > 6.
Otherwise, for n € {2,3,4,5}, all vertices except py are solvable.

Proof:
The fact that vertices V' \ {p;} are always solvable follows from Theorems 3.2, 3.7. The fact
that p; is not solvable for n < 6 can be verified by exhausting all sequences of reachable
problem states.

For n > 11 and t = n — 11, solution sequences for p; can be constructed as follows:

1. Use Lemma 2.2 to solve P(’G’GH) in pg and P(,7+t,n) in pp,.

2. Apply transitions (v LY 81 2 S Ay Do 4 e b Pn B, p1) and ({p3, ps} 2 P4 LY p1)-
It is left to consider n € {6,7,8,9,10}. We give the following solution sequences:
g
Gfg — G/o
GTi — gfo
Gl = GJo
Gfi = gfo
GI:° = Gfo

Sy(s2) > pa 5 ps > p1)(Pla5)(4) > p1),

ps = p2)(Sh(52) = p2 = pr = p1)(Plagy(4) = p),
P2 = p3)(Sh(ve) 2 ps 2> ps)(pr = ps = p1) (Plag)(4)
Sh(52) 2 pa = ps = p1) (Ply 5)(4) (Pe gy (7)) (P4 = pr
Sh(s2) 2 pa = po = p1) (Pls 5)(5)) (Plr.10)(8)) (05 > ps = p1),

I S SR

by applying Theorem 2.3 to solve P, ; in p; as P, (i) and S5 ~ P in s3, v as S3(s2), S5(vo).
]

Image 7: Solution sequence for p; vertex of dandelion graph Ds j.
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It is left to consider vertices of P(’Lm) subgraph for m > 3. First, we construct solution
sequences for n = 2m+3. In that case, solving the vertex pz for even m must be considered
separately. For example, the following image illustrates the case m = 6.

Image 8: Solution sequence for p; vertex of dandelion graph Dg 15 (see [6]).

A similar strategy can be used for even m > 6. This strategy was inspired by the
construction given in the Proposition 3.9.

Lemma 3.11. In a dandelion Dy, ,, m even, vertex pm is solvable if n = 2m + 3,m > 6.

Proof:
For m = 6, see Image 8. For m > 8, let S (vo) = 5 ,,,_1y(v0) = ({s1,--,Sm_1} s, Vo)
and follow the procedure:

m m-+1 m+5+1
1. GM = GP(S],(vo) = pm — Pam+1)(Plom—m 15, 9m11)(2m + 1) —— pz).

1
2. G2 =G (P(/m+1,2m—%+1) (m £ 2) = Pzt > Sm ” p%+2)(pn — pn—l)-

Pm /2

3. G =GM (P,

el " 2m—2 2m—12 42
m—1)(3) - p%+2)(P(/%+2,m_1)(5 +2) — pomi2 ——— pm).

12

Pomemiz+2 / Pam+2

Image 9: Illustration of the strategy used in Lemma 3.11.
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Lemma 3.12. In a dandelion Dy, ,,m > 3, all vertices are solvable if n = 2m + 3, except

vertex ps if m is exactly equal to m = 4.

Proof:
We only need to consider v € V(F,,,) due to Lemma 3.1 and Theorems 3.2, 3.7. For
t € [0,m), let

m—+41 m—+2 m-+3+t
R — GfO(STIn - Pm+1 E >pn)(P(,n—t,n) (n) R Pm—t)-
Let Gfe = GE™" and r =n — 2(t 4+ 1). Now we can solve vertices p,,—¢,t € [0, F) as
m-+1—t
G = GN (Pluiapt1y(r) 7= pr—s)(Pm(m — 1)).
We can solve remaining vertices py,_¢, t € [pLE | m) as
2

Gl = Gfl(P(/m—t+1,m) (r) = pn—t—2)(P(lm+2,n—t—1)(” —t—2)— pm—t)(P(le—t) (m —1)),

unless m is even and ¢ = 7. In that case, r =n —2(t+1) = m+1 but fi(pms1) = 0 as seen
in G/1. Therefore, It remains to solve the pz vertex for even m as a special case. It is not
hard to verify that this is not possible for m = 4. Otherwise, see Lemma 3.11. O

(t>mi2)

Image 10: Strategies used in Lemma 3.12.

Note that in the proof of Lemma 3.12; p, comes either after or before p,,,;. In the case
where p, = py,r1, we must use Lemma 3.11 instead because we cannot use the same vertex

twice. For this reason, p= had to be considered separately.
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Corollary 3.13. In a dandelion Dy, ,, m > 3, all vertices are solvable if n > 4m + 6.

Proof:

We only need to consider p; € V() due to Lemma 3.1 and Theorems 3.2, 3.7.
Dandelion graph G = Dy, ,,m > 3 for n = 4m+6+t,t € Z* can be split into two disjoint

subgraphs G1 ~ Dy, om+3 and Gy = P(’2m A AT EE)

in any vertex according to Lemma 3.12 and that (G5 is solvable in any vertex according to

the Theorem 2.3. Solve G in vertex p; € V(I ,,)) C V(G1) as follows:

~ Pyni34e. We know that (G is solvable

1. Solve Gy in p; and Gy in poyi34tts-

i 2m+3+t
2. Apply transition (pamy3eipi — gl

O

It remains to consider the case n € (2m + 3,4m + 6) except when (m,n) = (3,10). It

also remains to see if it is possible for some vertices to be solvable when n < 2m + 3.

Theorem 3.14. In a dandelion D,,,,m > 3, all vertices are solvable if n > 2m + 3, except
vertex py if (m,n) = (4,11) and vertezx p; if (m,n) = (3, 10).

Proof:

Due to Corollary 3.13, we only need to consider n € (2m + 3,4m + 6) and p; € V(P(’Lm)).
Using similar argument as in proof of Corollary 3.13, we only need to consider solving vertices
Pm—t,t € [0,m) forn € (2m+3,3m+7+1t) = Ny. Let n =2m+3+k,k € Nand y =n—t.
Start with the following problem state:

Gt = G1(8],(v0) = Prmy1) (Pl1mesy(m — 1))

First we solve the case k < t, which implies t > 2. If m = 3, it is not hard to verify that
(m,n) = (3,10) is not solvable. If t = 2, then k£ = 1 and use the following solution sequence:

Pm—2

sz = Gfl (P(lm—2,m) (m_2))(pm+1 — P(/n—Q,n) (n_l) - pm—2)<P(/m+2,n—3) (2m_2) — pm—Q)'

Otherwise, for m > 4,k € [1,t),t € [3,m), let 6 = m + k — 2t. Then, solution sequence is:

1. If § > 0, then G™ = G/ (ppy1 = P,y ) (2m +3) = pmy) and

Pm—t

sz = Gh1<P(/m—t,m) (m - t))(P(,m—f—Q,n—t—l) (m 1+ 5) — pm—t)-

2. If 6§ = O, then Gh2 = Gfl (pm+2 — Pm+1 — P

(n—t,n)

(2m+4) = pm—t) and

Pm—t

GF = G" (Pl yy1,m) (M) = Plonyzng1)(m +1) = Pre)-

3. If § < 0, then G" = GN (p1 — P(’n_m)(Qm +3) = pm_¢) and

Pm—t

It is not hard to verify that these solution sequences always work for the case k < t.
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Otherwise, k > t. Let k =1t + ko + k1 + ko where kg, ki, ko € Z*. We consider three cases:

1. Set k; = ko = 0 and allow kg € [0,¢]. That is, we have n € [2m + 3 4+ t,2m + 3 + 2t].
In this case, we first move t — ky frogs to p,,—¢, then we move ky frogs to p.,,.1 to be
able to bring the farthest ¢ + 1 frogs from vertices {py, Dy+1---,Pn} t0 Dt

(1)
Gf2 = Gfl (P(lm—t,m—ko) (m - t))(P(,m—b—l—ko,m—f—l) (m = 1))(P(/y,n) (yDv

(1) (1)
Gl =Gl (pm-i—l — Dy — pm—t)-

P —t (L)
Now only G+ = G/ (Plmtoy-1)

the remaining m + 1 + k — t frogs to pm—¢.

(2m —t + 1+ ko) = pm_¢) remains, which moves

2. Set ky = 0,ky =t and allow k; € [1,m). That is, n € 2m + 3+ 2t + 1,3m + 2 + 2t].
In this case, in addition to ky = t frogs that we move as in 1., we also need to move
additional k; frogs to p,,+1 to be able to bring the farthest ¢ 4+ 1 frogs to p,,_¢.

f(2-) f(l‘) /

Now only (™" — G5 (P!
Yy

(m+2+k17y_1)(2m + 1) = pm_¢) remains.

3. Set by =m —1,ky =t and allow ks € N = k > 2t +m. That is, n > 3m + 3 + 2t.
Although this case holds for any ¢, it is only necessary if ¢ € {0,1,2,3}, because
otherwise, n € Ny. Let ko —1 = kj € Z*. We want to move r = ko+ k1 +ko = t+m—+k3
frogs from vertices {py_1,Py—2; ..., Dy—r} t0 Pm+1, to be able to bring the farthest t 4 1
frogs to pm—¢. Note that p,_, = pam+3 and that p,,; is always reachable if ¢ > 2,

3.a)

( *
GfZ = Gfl(P(,y—r,y—l) (Qm + A i kQ) — Pm+1 — py)(P(ly,n) (y) - pm—t)>
Pm—t (3.a)
sz — Gf2 (P(,m—t,m) (m — t))(P(/m+2,2m+2) (2m +1-— t) — pm—t)' (3&)

Otherwise, if ¢ = 1, then it is reachable if we include one more frog,

(3.b)

Gf2 = Gfl (P(,y—r—l,y—l) (2m +3+ k;) — Pm+1 — pn)(P(,y,n) (n) = pm—t)7

Pm—t (3.b) ,
sz = Gf2 (P(m—t,m) (m - t))(P(/m+2,2m+1) (2m - 1) - pm—t)- (3b)

We cannot use a similar trick for ¢ = 0 right away, because in this case, y = n. This
means that including more frogs to compensate for small n would make the transition

(Pma1 — pi) jump to ¢ > n. Instead, for k5 € {0,1,2} we can solve it as

Pm—t

sz

/

=G5 (Pmt1 = Pamis — pm)(P(m+2,2m+2)(2m + ko) — P(/2m+4,n)<n —2) = pm).

It remains to solve ¢t = 0 for k£ > 3 which is n > 3m + 6. Actually, we are done with
this case, because this n is now large enough for the (3.a) strategy. Even so, note that
such a strategy is only needed for ki = 3, because n & Ny if k5 > 4,t = 0.

This completes the proof. 0
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We can visualize the previous theorem with the following illustrations.

Image 11: Strategies used in Theorem 3.14 for the case k < t.

.................................................................................... ‘
pm+1-|<0 P+t p2m+1-t+k0 py Pn
(2)
(3.2) ®
Pom+1-t Poms+2 Poma+1+t+k py Pn

Image 12: Strategies used in Theorem 3.14 for the case k > t.
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It remains to consider vertices p; € V(P(’1 m)) and n < 2m + 2,m > 3. Similarly as in
Problem 3.8, the hard part is characterizing unsolvable vertices.

Problem 3.15. In dandelion Dy, ,,n < 2m + 2, which p; € V(P(’1 m)) are solvable?

For example, we solved m € {3,4,5,6,7} using an exhaustive computer search. There-

fore, Problem 3.15 remains open for m > 8. To summarize:
e (m = 3) : There are no solvable vertices.

e (m=4):1If n € {7 8} then p, is solvable.

(m=5):1If n€{9,10,11} then pj; is solvable.
e (m = 6) : Solvable cases are (n > 10,{ps}), (n = 13,{p1}), (n = 14, {p1, p2}).

e (m =T7): Solvable cases are (n > 10,{p;}), (n = 15,{ps}), (n = 16, {p1,p2}).

4 Unsolvable tree graphs

Graphs that are unsolvable in every vertex can be hard to find. But, there is a trivial
class of tree graphs that we can characterize. Let S{p, m,) be a “2-star” graph, consisting of

two star graphs Sy,,, Sm, With centers v, v3 connected by an edge {v},v3}.

Theorem 4.1. All vertices of a 2-star Sgm, m,}, M1, M2 > 2 are unsolvable, except when

{mla m2} = {{27 2}7 {27 3}}

Proof:
Due to symmetry, we need to consider only the (s} + vy 4 vg + s7) subgraph for any pair of
vertices s; € V(Smy),8=1,2,...,my and 87 € V(8y,),5 =1,2,...,ma.

It is not solvable in a center vy € {v], v} because the leaves connected to the opposite
center are at a distance of 2 but share their only neighbor.

A solution sequence that solves a leaf vertex cannot combine the centers. Otherwise, the
remaining leaves are left without nonzero neighbors. Thus, only transitions beginning with
(vg = s1), (v} — s2), (st — v}), or (5?2 — v2) remain. Considering all such transitions, we
see that this only works for {my,mo} € {{2,2},{2,3}}. O

Image 13: All 3 fully unsolvable trees with |V| < 10 and not covered by the Theorem 4.1.
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5 Complete binary tree graphs

Let T}, be a complete binary tree with vertices in V and height of h. Then |V| = 2"+ 1.
Let vy be the root vertex and v(i,j) = v;; € V be the ith vertex at distance j from wy,
j€{1,2,3,...,h},i€{1,2,3,...,27}. Due to symmetry, we only need to consider the root

vertex and one vertex from each V; set, where V; = {v; ; : i € {1,2,3,...,2/}}. For example,

1. T7 ~ Pj5 is solvable in every vertex.
2. T5 is solvable only in v; € V.

3. Tj is solvable in every vertex except in vy € V.

The above cases can be verified by exhausting all reachable states. Otherwise, we have h > 4
and the following conjecture.

Conjecture 5.1. Every vertex of every Ty, h > 4 1is solvable.

We strongly believe in the conjecture, but are unable to complete the proof. We discov-
ered strategies to solve Tj, h < 20 in the root vertex vy by hand, but we were not able to
extend them to a general strategy (see |9, 10]). Similar strategies can be used to solve other
vertices, but this is still not a general strategy for h > 4.

For example, we can reduce the process of solving 7}, in a vertex v to solving a smaller
case Tj,_j in vertex v if we can “shave oft” top layers of vertices by sending their frogs to
vertex v without using frogs in other layers.

We have thought about applying induction to subgraphs, but have not been able to
find sufficient strategies or patterns to complete the argument. The main problem with
induction is that the number of vertices grows exponentially, but the diameter grows linearly.
Consequently, we need to consider small subgraphs that are not necessarily complete binary
trees. Maybe someone else is interested in this paper and can follow up on this conjecture.

A

0

Image 14: Sending frogs from T} subtrees to vertex vy to “shave oft” top 5 layers of Tig.

For example, in Image 14 we consider T} subtrees from the top 5 layers of a Tig tree and
select vertices Ay € V=15 and By € Vj—i5 that are 15 and 16 edges away from vertex v;.
Note that 15+ 16 = 31 = |V(T})|. That is, we can then use the transitions (--- — Ay — vp)
and (--+ — By — vg) to remove all frogs from the top T, subtrees. If we were to build an

inductive argument, this shows that Tig is solvable in vq if T14 is solvable in vy.
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6 Results

In this last section, we first summarize all obtained results. Recall that a dandelion D,,

consists of a star subgraph S’ and a path subgraph P’.
m g n

i

2.

3.

In a path P,,n € N, all vertices are solvable, due to the Theorem 2.3.

In a star S,,, m > 3, only the vertex of degree m is solvable, due to the Theorem 2.5.
In a starfish S, ,,m € N,n > 2, all vertices are solvable, due to the Theorem 2.9.
Generalized S(,,,), a1 # ... # an, is solvable in every vertex, due to the Theorem 2.10.

Generalized S,,,), a1, .., an > 1 is solvable in every vertex, due to the Theorem 2.13.

. In a dandelion D, ,,, (m,n) € N2, leaf vertices s € V(S),) are solvable if n > m except

when (m,n) € {(3,4),(3,5),(4,6)}, due to the Theorem 3.7.

. In a dandelion D, ., (m,n) € N?  all vertices are solvable if n > 2m + 3 except the

vertex py if (m,n) = (4,11) and except the vertex p; if (m,n) = (3,10), due to the
Theorem 3.14.

Finally, we summarize all the problems that have been discussed but remain unsolved.

1

2.

3.

4

Problem 3.8 asks about leaf vertices s € V(5],) of dandelions when n < m.
Problem 3.15 asks about non-leaf vertices of dandelions when n < 2m + 3.
Section 2.4, can we characterize S(,,) containing indices ¢ € I such that a; = 17

Conjecture 5.1 claims all complete binary trees T}, h > 4 are solvable in every vertex.

For discussion, comments on MSE or MO are welcome (see |7, 8, 9, 10]). Likewise, we would

like to know if any other class of graphs is being worked on.
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