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1 | Introduction

By serving as an essential input into virtually all forms of financial decision-
making, interest rates have wide-reaching effects on the whole economy. Given its
rate-setting mandate, understanding the dynamics of interest rates is of particu-
lar relevance for the central bank. Financial markets provide an information-rich
environment needed to extract the relevant aspects of these dynamics. A par-
ticularly important aspect is the term structure of interest rates, most commonly
represented as a yield curve. By describing the relationship between residual ma-
turity and the level of interest rate, the yield curve provides valuable insight into
the market participants” expectations of the future path of interest rates. Given its
importance for monetary and macroprudential policy, most major central banks
implement an internal system for estimating yield curves ([2], [4], [9], [31], [48]).

In practice, yield curves are derived by fitting a specific functional form to
price data of fixed-income securities like bonds and interest rate swaps. Typically,
two classes of approaches to fitting the yield curve are employed: spline-based
and parsimonious models. Due to their simplicity and ready applicability to the
broader framework of term structure modeling, parsimonious models are often
preferred by academics and central banks. In particular, extensive literature has
been developed over the years on the popular Nelson-Siegel (NS) model, which
brought rise to a class of related models, often collectively referred to as the NS
class. Although the NS model is still used in practice, the Svensson extension
of the NS functional form is preferred among practitioners, including the central
banks, for its added flexibility ([48]).

Deploying yield curve models for systematic large-scale applications comes
with a particular set of challenges, arising both as a consequence of the models’
statistical properties and the methodology applied in estimating them. Specifi-
cally, one of the often-reported findings is that the estimated parameters of the
NS-class models are prone to exhibit erratic behavior, the severity of which de-
pends on the treatment of the exponential decay parameter 7 in the estimation
setup ([3], [31], [56]). Given that such behavior can hardly be justified econom-
ically, it diminishes the credibility of the model required for its application in a
broader context of economic inference and generalization (which is one of its main
advantages relative to spline-based alternatives). Due to the specific structure of
the functional form, the Svensson extension is particularly prone to this type of
behavior, as demonstrated in [31], [56] and Chapter 5 of this thesis. Furthermore,
the approach by which the Svensson model extends the NS model cannot be read-
ily generalized further to accommodate more complex yield curve shapes.

This thesis considers an alternative path to extending the NS model with La-



guerre polynomials, which has been hinted at in the original paper by Nelson and
Siegel ([46]) and explored in more detail in [11], [35], [39], [40], and [41]. The
approach is based on the observation that the NS forward rate functional form,
when orthogonalized, can be viewed as a special case of the Fourier-Laguerre se-
ries expansion. This formulation provides a way to extend the model with an
arbitrary number of terms while, in contrast to the Svensson extension, retaining
the important theoretical properties of the NS-class that enable its applicability in
the broader term structure modeling context ([42]).

Despite favorable theoretical and statistical properties, some of which have
been noted in the present literature, an extensive evaluation of this approach has
not been conducted. This work contributes to the existing literature with an anal-
ysis of the theoretical and empirical profile of such an approach, particularly in
comparison to the widely used Svensson model.

When it comes to parameter estimation, the NS model (and especially the
Svensson extension) has been known to exhibit erratic behavior of parameters
if the nonlinear decay parameter is allowed to vary between consecutive periods.
Moreover, certain values of the nonlinear decay parameters, although resulting in
an optimal fit, may lead to unreasonable values of the remaining linear parame-
ters, undermining their potential for economic interpretation. This gives rise to
the trade-off between stability, goodness-of-fit, and the model’s capacity to gen-
eralize, which is shown to be mediated by different values of the nonlinear decay
parameter. The conducted empirical study aims to investigate the nature of this
trade-off when different approaches are used for estimating the nonlinear decay
parameter.

Finally, a novel method is tested to estimate model parameters from a sample
containing coupon-bearing bonds, when the nonlinear decay parameter is fixed.
The method initializes with an initial parameter estimate and proceeds as a se-
quence of two-step iterations:

1. In the first step, coupons are stripped from each coupon-bearing bond. The
procedure involves computing the present value of the bond’s coupon pay-
ments using the current yield curve estimate and subtracting it from the
bond’s price.

2. In the second step, the zero-coupon yields are computed for all bonds in the
sample. Stripped prices obtained in the previous step are used when comput-
ing zero-coupon yields of coupon-bearing bonds. The updated yield curve
estimate is obtained by performing ordinary least squares over the sample of
zero-coupon yields.

The procedure terminates when the difference in parameter estimates from subse-
quent iterations is within a specified interval. A heuristic analysis of convergence
is presented.



2 | Term structure of interest rates

Interest rates are one of the most fundamental drivers of the economy. Often de-
scribed as the price of money, they act as a balancing force between the supply and
demand for money. Interest rates, almost unlike any other macroeconomic vari-
able, directly influence the decisions of economic participants across all sectors.
Whether it is a business evaluating a capital investment, a household requiring a
mortgage, or an investor pricing a government-issued asset, interest rates are an
essential input.

In its simplest definition, interest rate refers to the agreed percentage amount
that the lender is compensated for a loan granted to the borrower. Naturally, there
may be as many different values of interest rates as there are potential borrowers.
One particular kind is particularly prominent in economic models: the real short-
term risk-free interest rate, which refers to the rate of interest that is

1. incurred on a hypothetical short-term’ loan;
2. expressed in real, rather than nominal terms;

3. determined under the assumption of guaranteed loan repayment (i.e., no
risk).

In practice, however, economic actors may want to determine the appropriate rate
of interest for loans with properties vastly different compared to the ideal one that
the real short rate is concerned with. We can consider the implications of deviating
from these idealized properties.

1. The loan may have a different maturity. The short rate is determined dynam-
ically, in line with the supply and demand for money. Therefore, the appro-
priate interest rate on a loan that matures at a future point in time needs to
reflect the expected time-average value of the short rate until maturity. If the
interest rate is higher than the expected short rate (plus a term spread), the
borrower may prefer to take on a series of short-term loans instead, repay-
ing the previous one with the subsequent one until the desired maturity is
reached.

2. Inflation can diminish the real value of (nominal) interest. A rational lender
would require to be compensated for this reduction. However, as the inflation
rate is not known in advance, its expected value would be factored into the
interest rate demanded by the lender.

! An infinitesimally short repayment period; it is a theoretical construct ([25]).

5



2.1. YIELD CURVES 6

3. The borrower may not repay the loan. To compensate for potential losses
stemming from the borrower’s credit risk, the lender will demand an addi-
tional premium.

For a standard loan (i.e., without special contractual features), the required in-
terest rate can be assumed to be purely comprised of the three components listed
above.? If we consider the interest rate as a function of the remaining time to ma-
turity, residual maturity, we obtain a yield curve.

2.1 Yield curves

The yield curve is a financial indicator depicting the term structure of interest
rates. Put more simply, it shows the relation between the residual maturity and
the (annual) interest rate, usually relating to some hypothetical future cash flow
(e.g., aloan). Since the discounted value of expected future cash flows is directly
reflected in the price of financial assets such as bonds, prices of such assets can
then be used to reverse-engineer the interest rate that investors apply in their pric-
ing process.

Although yield curves can be estimated from other instruments such as interest
rate swap rates and deposit contracts, this thesis focuses on yield curves estimated
from government bonds. Government bonds are usually traded by large insti-
tutional investors and are typically highly liquid, approximating the theoretical
concept of perfectly competitive markets. Furthermore, given the large size of the
market for government bonds, government bond yield curves are also essential
for analyses related to financial stability.

When analyzing the term structure of interest rates, there are several benefits
to modeling yields as continuous (and, ideally, smooth) functions of residual ma-
turity, rather than relying purely on a discrete set of yields.

e First, the set of residual maturities for which yields could be reliably calcu-
lated from the available financial market data, without any model assump-
tions, is often limited. This makes it practically impossible to adequately
compare the yields of different issuers, or the same issuer across time. For
example, it is unlikely that an issuer, let alone multiple issuers, will have
an outstanding bond with exactly 10 years of residual maturity. Having a
smooth estimate of the yield curve therefore allows one to obtain an estimate
of the yield for an arbitrary residual maturity.

e Second, the yield curve enables effective visualization of the term structure of
interest rates. In this way, it allows one to view interest rates as smooth curves
across maturities, rather than finite sets of discrete points. Aside from pro-
viding the basis for pricing financial instruments, this facilitates more com-
plex inference that is based on analyzing the shape of the yield curve. By
reflecting interest rate and inflation expectations as well as the term spread,
the shape of the yield curve reveals the underlying dynamics of the business

2A finer structure of risks that determine the appropriate level of interest rate is given in [25].



2.1. YIELD CURVES 7

cycle. This is why the yield curve assumes a pivotal role in policy modeling
for central banks. Additionally, analyzing the effects of yield curve shifts is
relevant in the context of interest rate risk management, particularly from the
perspective of financial corporations that manage large fixed-income portfo-
lios such as banks and insurance companies ([5]).

A simple and common way to characterize a yield curve’s shape is by its slope.
In a similar way that the yield curve can be considered as a visual analog of
the term structure of interest rates, the slope can be seen as the visual analog
of the term spread. For most practical applications, the slope is defined sim-
ply as the difference between the long-term and the short-term yield. 10-year
and 3-month yields are commonly chosen to represent long-term and short-term
yields, respectively. Although there are ways to define the slope without relying
on a somewhat arbitrary choice of residual maturities used to represent short-
and long-term yields,® the provided definition based on the yield spread is of-
ten considered to provide a reasonable combination of accuracy and robustness
([24]). A positive yield curve slope implies a positive term spread: long-term
assets yield a higher rate of interest compared to their short-term counterparts.
Correspondingly, such yield curves are described as upward-sloping. In the con-
verse scenario, the yield curves are referred to as downward-sloping or inverted.
Several representative examples can be seen in Figure 2.1.* The characterization
of downward-sloping yield curves as inverted explains why an upward-sloping
yield curve is often referred to as the normal yield curve. Indeed, yield curves are
most commonly upward-sloping, as evidenced by their predominantly positive
slope historically (Figure 2.1).
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Figure 2.1: Historical 10-year and 3-month yield spread of the euro area yield
curve (left); upward-sloping (1 February 2012, 1 February 2018) and inverted (15
September 2008°, 1 February 2024) euro area yield curve examples (right)

3For example, when performing principal component analysis on yield curve time series, the
second principal component is often referred to as the slope of the yield curve.

“Euro area yield curves can be plotted and compared interactively using the ECB’s online tool:
ecb.europa.eu/stats/financial_markets_and_interest_rates/euro_area_yield_curves

®The slope, calculated as the spread between the 10-year and the 3-month yield, is negative. Al-
ternative definitions (e.g., based on 10- and 1-year yields) would imply an upward-sloping curve.
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Yield curve inversion, a relatively rare but significant event characterized by a
negative slope, is widely considered a leading indicator of an impending recession
([23]). However, the relationship between the degree of inversion and recession
probability is nuanced and has been contested in recent literature ([29]).

2.2 Why is the normal yield curve upward-sloping?
Four hypotheses are popularly used to explain the shape of the yield curve ([48]).

1. The pure expectations hypothesis postulates that each interest rate level
across the yield curve reflects the expectation of the average short rate in the
period between now and a given (residual) maturity. The hypothesis is mo-
tivated by the assumption that an investor should be able to, under the ab-
sence of arbitrage, substitute any long-term bond investment with a series of
short-term bond investments rolled in the period until the long-term bond’s
maturity. Although theoretically elegant, the pure expectations hypothesis
has been demonstrated to fail empirically ([49], [51]). This is also apparent
anecdotally: the normal (upward-sloping) shape of the yield curve would,
under the pure expectations hypothesis, imply the expectation of rising short-
term interest rates. However, despite the prevalence of the upward-sloping
shape of the euro area yield curves in recent history, short-term interest rates
have not been increasing; instead, they have been decreasing or stagnating.”
A similar trend can be observed across other major economies.

2. The segmented market hypothesis relies on the assumption that debt instru-
ments of varying maturities are not substitutes. Instead, different groups of
investors (market segments) are dominant in generating the supply and de-
mand of debt instruments with particular maturities. The dynamics of spe-
cific preferences across these segments is what generates the particular yield
curve shape.

3. According to the preferred habitat hypothesis, investors have a preferred in-
vestment horizon and require a sufficient premium to deviate from it. Under
this hypothesis, a relative surplus of demand for short-term debt (compared
to long-term debt) would generate the observed upward-sloping shape.

4. The liquidity preference hypothesis complements the pure expectations hy-
pothesis with an additional assumption that investors demand a premium
over the expected short-term rate to compensate for tying up liquidity in a
long-term asset. If the interest rates were to rise after a bond has been ac-
quired, the bond price would drop, resulting in a capital loss if the investor
liquidates the bond before maturity. To compensate for this liquidity risk, a
rational investor will demand an excess return on long-duration bonds. The
fact that risk is assumed to increase with the duration for which the liquidity

’The ECB deposit facility rate can be found on the ECB Data Portal:
data.ecb.europa.eu/data/datasets/FM/FM.D.U2 EUR 4F.KR.DFR.LEV



2.3. YIELD CURVES AT THE EUROPEAN CENTRAL BANK 9

is tied up (i.e., the liquidity premium rises as a function of duration) explains
the prevalence of the positive yield curve slope.

2.3 Yield curves at the European Central Bank

In many aspects, monetary policy can be viewed as a two-way interaction: the
central bank acts and reacts to input it receives from the economy, adjusting its
policy to achieve optimal effectiveness in implementing its mandate. Financial
markets form a key part of this interaction. Apart from acting as one of the key
channels of monetary policy transmission, they contain real-time information on
market participants’ evaluation of the monetary policy and its expected implica-
tions. Financial markets, being a key component of the financial system, also re-
flect developments that are relevant for the broader financial stability. Therefore,
the timely availability of high-quality financial indicators is essential for support-
ing informed decision-making at the European Central Bank (ECB).

The ECB estimates and publishes two euro area government bond yield
curves:®

o The AAA-rated yield curve is estimated from euro area government bonds
rated AAA, reflecting the most favorable credit risk assessment.

e The second is estimated from all euro area government bonds.

Since the AAA-rated yield curve reflects market expectations of nominal interest
rates under negligible credit risk, it can be used as a proxy for the risk-free yield
curve.” Generally, risk-free yield curves are more universally applicable as they
don't reflect issuer-specific credit risk. Instead, they are primarily influenced by
macroeconomic factors such as market expectations of the real interest rate, infla-
tion, and the term premium. These factors play a crucial role in informing mon-
etary policy decisions. Given that it approximates the lower bound to borrowing
costs, the euro risk-free yield curve also facilitates the computation of credit risk
premia for euro-denominated debt, which is vital for assessing financial stability
and integration in the euro area.

The contribution of expected inflation can be eliminated from the (nominal)
risk-free yield curve by subtracting the implied inflation rates ([22]). Real risk-
free yield curves reflect solely the expected real short-term rate and the term
premium. Decomposing the yield curve further generally requires a dedicated
theoretical framework. Despite the usefulness of real yield curves for economic
analysis, nominal yield curves are most commonly reported.

Although they are most commonly used to model nominal government bond
yield curves, most standard yield curve modeling frameworks, including the one
presented in the next chapter, can be readily applied to a wider array of modeling
contexts (e.g., corporate bond yield curves, swap curves, and real yield curves
derived from inflation-linked bonds).

8ech .europa.eu/stats/financial markets_and_interest_rates/euro_area_yield_curves/html/index.en.html
9 Among issuers with the same credit rating, the actual credit risk as recognized by the market

can vary. German Bunds have become widely accepted as a proxy for the euro risk-free rate due

to their perceived high credit quality (even relative to its AAA-rated peers).






3 | Yield curve modeling

In practice, yield curves are not observed. The indirect influence of the yield curve
can however be observed in the prices of financial assets. The primary goal of the
yield curve model, therefore, is to infer the yield curve that is implied in these
observed prices. Since prices, rather than yields, are observable directly in finan-
cial markets, the estimation problem cannot be generally reduced to simple curve
fitting. This is, however, possible in the special case in which the sample contains
only zero-coupon bonds.

The fair price of a risk-free zero-coupon bond paying a unit principal at time ¢
is given by

p(t) =exp (—ty(t)), (3.1)

where t is residual maturity, and y(t) is the continuously compounded annual
yield at maturity ¢t. Solving for yield in (3.1), we can obtain an expression for
transforming a sample of prices into a sample of (zero-coupon) yields

y(t) = 7 In(p (1)) (32)

From the obtained sample of maturities and yields (t1,y1), ..., (ts, Yn), we can
reformulate the objective to look for a curve that best fits the set of points (Fig-
ure 3.1).!

3.1 Common approaches to modeling yield curves

There is a multitude of criteria according to which one can categorize various yield
curve models. In most applications, it is practical to consider two classes ([48]):

e spline and kernel-based models; and
e parsimonious models.

Spline and kernel-based models can have arbitrary flexibility, and consequently
superior goodness-of-fit. This makes them particularly useful if the estimated

ISince zero-coupon bonds are scarce for longer residual maturities (more than 5 years; see
Figure 5.1), Figure 3.1 also includes prices and yields of coupon bonds whose coupon has been
stripped (i.e., their value subtracted to obtain an estimate of the equivalent zero-coupon price and
yield) using the method described in Section 4.2.

.1
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Figure 3.1: 15 June 2015 closing prices (left) and yields (right) of German zero-
coupon government bonds plotted against residual maturity

curve is required to closely match the observed bond yields (e.g. when pricing
financial assets).? Spline models, originally introduced by McCulloh ([45]), typi-
cally involve piecewise cubic polynomials that are joined at knot points, the num-
ber of which can be arbitrary. Normally, a larger number of knot points allows for
more flexibility but risks overfitting the observed data, potentially resulting in un-
realistic shapes. It was later identified that the roughness of the curve produced
by the original McCulloh model was contributing to instability in the estimated
forward curve ([55]). Although such behavior is theoretically possible, frequent
and significant changes in the term structure are rather unlikely. Further devel-
opments incorporated shape constraints to counteract such behavior, often in the
form of a roughness penalty. The model put forward by Waggoner ([55]) involved
applying a variable roughness penalty in the form of a monotonically increasing
three-tiered step function that increases at maturities 1 and 10. Applying a higher
roughness penalty for longer maturities had a dampening effect on long-end os-
cillations. The Waggoner model is used among several major central banks ([48]),
including the Bank of England ([2]).

Spline and kernel-based models are often considered examples of non-
parametric regression, not necessarily because they do not involve parameters,
but primarily because parameters are not of substantive interest. In contrast, the
defining characteristic of well-specified parsimonious models is that the estimated
parameters reflect efficient representations of the term structure that can be sub-
jected to further analysis (using, for example, time series methods). This feature
makes such models appealing to researchers and policymakers whose objective
goes beyond achieving maximum fitting accuracy. For this reason, parsimonious
models are predominantly used by the central banks (although exceptions exist).
Generally, parsimonious models are based on a functional form that attempts to
capture the stylized features of the yield curve, with the ultimate goal of achiev-
ing parsimony. Parsimony, however, often comes at the expense of in-sample
goodness-of-fit but often performs similarly out-of-sample ([7]). Moreover, the

2Cboe Volatility Index® uses a cubic spline to interpolate yields used in the calculation of im-
plied volatility ([13]).
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lack of flexibility may serve to prevent overfitting, which can disrupt inference
about variables such as interest rate expectations. Ultimately, the key challenge
when defining such models is to identify a functional form that closely matches
various yield curve shapes with a minimum number of parameters.

3.1.1 Nelson-Siegel class

The relation (3.2) establishes the link between the zero-coupon bond’s price and
its (zero-coupon) yield. The implicit assumption in this definition is that the ac-
cumulation period starts now (ats = 0) and extends until maturity (s = t). If the
start of the accumulation period is instead deferred to some t; > 0 and lasts until
t,, the applicable interest for the period [t;, ;] is referred to as the forward rate

([251)

fli ) = B CD - L) ~inp(r). (33)

If we fix h > 0 and set t, = t; + h, we can define the h-year’ forward rate

fun(t) = 7 (np(t) ~Inp(t + 1), (34)

The instantaneous forward rate (also referred to as the force of interest) reflects
the annualized interest rate associated with an infinitesimally short period i — 0
starting at some ¢

£(£) = lim 1 (in p(t) ~In p(t + 1)) =~ In p(s) (35)

The instantaneous forward rate can be viewed as the forward analog of the short-
term rate described in the previous chapter.

In most practical cases, the yield of a bond refers to its spot rate, which is the
constant annual interest rate applicable to the period between now and some time
t. Spot rate can be represented as the time average of the instantaneous forward
rate in the period [0, ]

y(t) E —%ln(p(t)) - —%/Ot%hlp(s)ds 32 %/Otf(s)ds. (3.6)

Nelson-Siegel class includes models based on the original Nelson-Siegel model,
which proposes a functional form for the instantaneous forward curve ([46])

f(t; B,T) = Bo + Brexp (—%) + /32% exp (—%) . (3.7)
Using (3.6) we can derive the spot rate
y(t: B,7) / F(s;B,7)d
1—exp(—z) (38)

= po+ P + B2

1 —e;(/pr(—%) "~ exp <_£)] |

3The time domain is typically assumed to be expressed in years.

t/T
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Owing to its favorable empirical and theoretical properties, the NS model is pop-
ular and widely used in academia and practice, particularly among central banks.
The model can successfully fit a wide range of common yield curve shapes, con-
tributing to an overall favorable in and out-of-sample performance profile ([18],
[3]). The model has also been shown to be useful in yield curve prediction ([26]).
The theoretical appeal of the model stems mostly from the structure of its func-
tional form, which consists of three basis curves that can be conveniently de-
scribed as the level, shape, and curvature ([44]). This representation is also con-
sistent with loadings obtained via principal component analysis applied to yield
curve data ([8]).* To better illustrate this intuition, the functional form (3.7) can
be rewritten as a linear combination of its basis curves

f(£B,7) = Bofo(t;T) + Brfi(t; T) + Bafa(t; T). (3.9)

e The first fo(t;7) = 1 is constant and corresponds to the level of the yield
curve. Since the remaining two basis curves approach zero in infinite time,
the corresponding parameter, By, can then be described as the long-term
(asymptotic) yield. When treated as time series, changes in By reflect ver-
tical shifts of the yield curve. It can be easily checked algebraically that the
same interpretation applies to both forward and spot curves. The fact that the
NS model effectively constrains the long end of the curve is an appealing fea-
ture of the model. It is supported empirically and consistent with the concept
of the (long-term) nominal neutral rate. This stylized feature is not directly
enforced by a spline model, which can potentially diverge to large (positive
or negative) values when extrapolated to long maturities. This unnatural be-
havior suggests potentially poor out-of-sample performance, which is why
most practical spline models incorporate additional model elements to con-
strain such behavior ([46]).

e The second basis curve f;(t;7) = exp (—1%) is a decreasing function, corre-
sponding to the slope of the yield curve. Since f,(0;7) = f1(0;7) = 1 and
f2(0; T) = 0, it follows that f(0) = Bo + B1. This provides a natural interpre-
tation of B; as the spread between the short (at t = 0) and long-term yield
(att — c0).

e The third basis curve is a concave function, corresponding to the curvature
of the yield curve. It affects the shape of the yield curve primarily in the
medium-term maturity range. Due to its concave nature, the third basis curve
has been visually associated with a U-shaped hump in the yield curve. The
magnitude and direction of this hump are determined by the parameter 3

([48])-

Parameter T is an exponential decay parameter. Typically, lower values imply
more curvature in the short end, balanced by more smoothness in the long end.
The converse holds for larger values of T ([46]). The parameter can be also
thought of as determining the residual maturity at which the third (curvature)

4[17] shows that a similar pattern of principal curves emerges in other, seemingly unrelated,
applications.
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component achieves its maximum ([20]). Since T enters the functional form in
the exponent, it has a nonlinear effect. In fact, 7 is the only nonlinear parameter; if
fixed to a constant, it would render the functional form (3.7) linear in the remain-
ing parameters. Fixing 7 to a prescribed value is a commonly used approach to
fitting the NS model, as detailed in Chapter 4.

The NS model has attracted significant research interest, which is partly be-
cause it performs well empirically, yet has few parameters with an intuitive in-
terpretation. This makes the NS model readily applicable in a broader context
of term structure modeling. Diebold and Li ([20]) used the NS functional form
to derive the dynamic Nelson-Siegel (DNS) model in which B¢ = (B1t, Bat, B3t)
is treated as a latent dynamic factor. Despite favorable theoretical and empiri-
cal properties, the (dynamic) NS model, however, is lacking in one important
theoretical aspect: it does not comply with the no-arbitrage assumption, which
is foundational in finance. The assumption asserts that in perfectly competitive
markets,” all potential opportunities for riskless profit (i.e., arbitrage) are in-
stantly eliminated through supply and demand forces. The departure from the
no-arbitrage assumption is manifested in the finding that it is not possible to de-
fine a nontrivial interest rate model that would produce the forward curves from
the NS family ([6], [28]). The appropriate corrections to the functional form need
to be incorporated to render the model compliant with the no-arbitrage assump-
tion ([15], [41]). The obtained class of arbitrage-free Nelson-Siegel (AFNS)
models is argued to be more theoretically rigorous, allowing one to appropriately
use the DNS model in a time series context. However, the finding by Coroneo,
Nyholm, and Vivada-Koleva that the original DNS model is compatible with the
no-arbitrage assumption in the sense that the estimated parameters are not statis-
tically different from its arbitrage-free counterpart ([16]) brings into question the
practical usefulness of such a modification.

Although most yield curve shapes are well-captured by the NS curve family,
certain more complex term structures may require more flexibility to reach a sat-
isfactory goodness of fit. Below, we explore two approaches to increasing the flex-
ibility of the NS model.

3.1.2 Nelson-Siegel-Svensson model

The NS model extended by Svensson ([53]) is the most widely used model by
major central banks ([4]), including the Eurosystem ([48]) and the Federal Re-
serve ([31]). The Nelson-Siegel-Svensson (NSS) model extends the functional
form (3.7) by including the fourth term

f(t;B,T) = Bo + Brexp (—%) +52Tilexp <—Til> + B3— exp (—%) . (3.10)

Similarly, the functional form can be rewritten in terms of basis curves to explore
the underlying intuition

f(t:B,T) = Bofo(t) + Brfi(t; 1) + Bafo(t; 1) + Bafa(t: ). (3.11)

®Bonds typically trade in deep and well-organized markets, matching closely the characteristics
of a perfectly competitive market.
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The functional form of f3 is identical to f», but it is parametrized by a differ-
ent nonlinear parameter 7,. The nonlinear decay parameter is therefore a two-
dimensional vector T = (73, T»). Similar to how f, can be associated with a U-
shaped hump, an analogous association can be made for f;. However, since the
shape of f; is determined by a different decay parameter 1, the characteristics
of this hump can be different. For this reason, the Svensson extension of the NS
model can be described as adding a secondary U-shaped hump to the functional
form.

As in the NS model, the functional form of the spot yield curve can be derived
from (3.10) by applying (3.6)

1—exp(—+ 1 — exp(—L
y(t; B,T) = Po+ B %I + B2 [%—exp (—%ﬂ

1-exp(—4) :
— o ()|

+ B3

1.0
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1
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Figure 3.2: NSS model, spot rate basis curves for T = (1, 10)

The popularity of the NSS model, particularly among central banks, can be
in part attributed to its ability to strike a good balance between flexibility and
simplicity. However, the model is deficient in certain important areas.

e First, it has two nonlinear decay parameters that complicate model calibra-
tion, often involving a non-convex optimization problem. The model may
also be badly conditioned for certain regions of T = (7, 7»), leading to a situ-
ation in which small perturbations in data lead to disproportionate changes
in parameter estimates. As an example, if 7 = T, the corresponding two
U-shaped humps will coincide and the model degenerates to a standard NS
model with the magnitude of the curvature equal to the sum B, + 3, re-
sulting in perfect collinearity. It has been demonstrated in [31] that having
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T) = T2 can lead to B, and B3 parameters assuming large absolute values, up
to 10°. In fact, all parameters of the NSS model are susceptible to instability,
even though estimated yield curves may exhibit a relatively stable shape and
favorable goodness-of-fit scores ([56], [31]). Without certain adjustments,
this property of the model makes it difficult to argue that estimated param-
eters reflect true structural quantities that can be used for meaningful eco-
nomic reasoning and inference.

e Second, some of the favorable theoretical properties of the NS model are not
preserved with the Svensson extension. Christensen, Diebold, and Rude-
busch show that it is not possible to incorporate corrections that would ren-
der the model compliant with the no-arbitrage assumption ([14]). This is
because the NSS model includes an extra curvature without the correspond-
ing slope component. This fact negatively affects the NSS model’s potential
for use in a more general time series and term structure modeling context

([35], [42])-

e Finally, the Svensson functional form does not provide a general way to ex-
tend the model with additional terms, possibly to fit more complex yield
curve shapes.

3.2 A model based on Laguerre polynomials

Laguerre polynomials are one of three classical orthogonal polynomials. The
closed form for the n-th Laguerre polynomial is given by

Lu(x) = ké (Z) (_k—{)kxk. (3.13)

The first few Laguerre polynomials are given in Table 3.1.

n | Ly(x)

01

1] —x+41

2| 1(x? —4x+2)

3| L(—x®+9x* —18x+6)

4 | 5 (x* —16x3 + 72x% — 96x + 24)

Table 3.1: First few Laguerre polynomials
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Laguerre polynomials are orthogonal on the positive semi-infinite interval
(0, 00) with respect to the measure w(x) = e~ *. Formally,

/Ooo e °Li(s)Lj(s)ds =0, i # j. (3.14)

From the properties of generalized Fourier series, any function a(x) : Ry — R
that is square-integrable with respect to the measure w(x) = e™*

/Ooo e *a(s)*ds < oo (3.15)

can be expanded into the Fourier-Laguerre series

a(x) = exp (—%) éckLk(x), (3.16)

where ¢y, ..., cr € R are coefficients. The condition (3.15) holds for all functions
of practical interest, including all conceivable yield curve shapes. Representation
(3.16) provides the starting point for using Laguerre polynomials to approximate
a function with arbitrary accuracy, which is done by choosing the desired number
of polynomials as the basis.® The coefficients co, . . ., ¢; € R can be estimated using
polynomial regression ([33]).

Motivated by (3.16), the Orthogonal Laguerre Polynomial (OLP) model of
degree n defines the instantaneous forward curve as a constant plus n — 1 Fourier-
Laguerre terms

FlisBr) = By texp (—é) ké Bely 1 (%) | (3.17)

Remark 1. Although not a part of the standard Fourier-Laguerre expansion, the inclusion
of a constant By in (3.17) is convenient for modeling the asymptotic interest rate (the level
component) implied by the instantaneous forward rate curve. This formulation can be
derived from (3.16) if we set a(x) = f(x) — Po.

In representation (3.17), the polynomial basis depends on the decay parameter
T which scales the independent variable t, producing nonlinear effects. Similar
to other NS-class models, the role of the decay parameter can be described as
controlling how curvature is distributed along the residual maturity axis. Lower
values imply faster decay, concentrating curvature at lower residual maturities.

Like the NS-class models, the spot yield functional form is derived from (3.6)

n—1 n—1 t
V(8,7 = po+ L () = o+ LBy [ filo)ds  (318)
k=1 k=1

with fx and yj being the instantaneous forward rate and the spot rate curve basis
curves, respectively, several of which are given in Table 3.2.

®A more comprehensive overview of the theory behind orthogonal polynomials is given in
[54].
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n | falt) Yn(t)

e (- P-few ()

2 | exp(—4) (F +1) FE+ew(-1) -]

3 |exp(—z) (2%2—%“) T-1(Z+1)ep ()
tHlow(h) (Cw+iE-es) F(S-ErEd)en(y) ¥
5 o (4) (B + 3 2 3) |75 (- %+ % +3) o (-

Table 3.2: First few elements of the OLP basis; instantaneous forward rate (f;)
and spot rate (y,)

Remark 2. If an alternative formulation of the instantaneous forward rate is used (one
in which the parameter to Ly_ is not scaled by 2)

f(t;B,7) = o +exp (—%) gﬁkLk—1 (;) : (3.19)

the functional form of the spot rate assumes a general form ([35])

8= poi 67 (1o (1)) o () BB B0, (1),

(3.20)

However, scaling by 2 ensures the orthogonality of the polynomial basis, which can be
easily checked from the orthogonality property of Laguerre polynomials (3.14).

Generally, several main reasons motivate the use of the Laguerre polynomial
basis to model yield curves.

e First, it is a natural generalization of the NS model.” Linear transformation
of f, in the NS functional form (3.7) to obtain an orthogonal basis on (0, o)
would yield

b= (1) o () 2

T

zﬁo+ﬁlexl’< )LO <2t> +ﬁ2eXp( i> : (2;)

which is equivalent to OLP(3). The theoretical consistency of the OLP gener-
alization ensures that many of the important theoretical properties of the NS
model are readily extensible to the OLP model. Most importantly, Krippner
showed that the OLP functional form can be adjusted to obtain an arbitrage-
free and intertemporally consistent specification ([40]).

(3.21)

7Extension using Laguerre polynomials has been implicated by Nelson and Siegel in [46].
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Figure 3.3: OLP model, first four spot rate basis curves for T = 3

e Second, the model doesn’t prescribe the number of parameters, allowing one
to readily adjust the degrees of freedom to optimize the parsimony-accuracy
trade-off for a given use case. Given the varying complexity of yield curve
shapes through time, the possibility to dynamically fine-tune the optimal de-
gree of model flexibility can enhance its overall performance: during periods
of relatively simple yield curve shapes, excess flexibility can lead to overfitting
which compromises out-of-sample forecasting performance. Conversely, pe-
riods of relatively complex yield curve shapes warrant more degrees of free-
dom to result in adequate goodness-of-fit. Dynamic adjustment of model
flexibility need not be manually performed by a practitioner; rather, model
selection methods (e.g. information criteria, L; regularization) can be ap-
plied to automate the decision process.

e Finally, the orthogonality of the polynomial basis may lead to better empiri-
cal properties of parameter estimates. The degree to which the orthogonality
of the polynomial basis leads to a reduction in regressor multicollinearity
will depend on two factors: the range of residual maturities included in the
sample (Laguerre polynomials are orthogonal on (0, o0); not on a finite inter-
val) and the value of T (which scales the residual maturity parameter, thus
controlling the distribution of curvature across the residual maturity axis).
Moreover, the orthogonality of the OLP basis used to represent the instanta-
neous forward rate, which is not observable in practice for individual bonds,
does not imply the orthogonality of the basis used to represent the spot rate
(3.18). Nevertheless, the OLP specification appears to be empirically robust,
as noted in [39] and exemplified in Chapter 5.

Although a forward rate functional form based on Laguerre polynomials has
been explored in the literature ([11], [35], [39]), it hasn't garnered much attention
from academics and practitioners. Correspondingly, extensive empirical studies
involving this approach have not been conducted.
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Misspeficiation of yield curve models. Most yield curve models are simplifica-
tions and are likely misspecified as statistical models in a strict sense ([21]). Itis
difficult to argue that residual maturity is the sole factor on which the term struc-
ture of interest rates depends. Although models that incorporate various macroe-
conomic variables in addition to maturity do exist, it is still likely that the actual
dynamics of the term structure are very complicated. Most yield curve models can
be seen as curve fitting problems, rather than statistical models in a strict sense.
That does not mean that such models are not useful. It does mean, however, that
care must be taken when statistical inference is based on these models. In the
context of a misspecified model, there is no true value for which fg represents the
data-generating distribution. Instead, the pseudo-true value is defined to be g*,
which, within the assumed model, best explains the data distribution in terms of
the chosen likelihood function. In the context of OLS estimation, that likelihood
function is implicitly assumed to be Gaussian.






4 | Model fitting and deployment

While prices of individual bonds are observable in practice, yields are generally
not. Because of this, and the fact that yield curve models typically model yields in-
stead of prices, one cannot simply apply classical curve fitting methods to tackle
the parameter estimation problem. Such methods are applicable in the (fortu-
nate but rare) case when a sufficiently sized sample of zero-coupon bond prices
is available. As seen previously, these prices can be transformed into yields with
a simple closed-form expression (3.2).

Given a sample of zero-coupon yields with corresponding maturities
{(t1,y1), ..., (tN,yN)}, model parameters can then be estimated using the least
squares approach by solving

mm; y(ti; B, T) — yi)> (4.1)

The least squares estimator is equivalent to the one obtained with maximum likeli-
hood estimation under the assumption of independent normally distributed yield
errors. However, the error normality assumption may not be fully justified, espe-
cially for longer residual maturities ([21]). Nevertheless, in most practical situ-
ations this assumption is deemed a satisfactory approximation and is commonly
used ([48]).

The functional form of the NS model (and the NSS model by extension) is
linear in B, but nonlinear in 7. Therefore, (4.1) corresponds to the least squares
parameter estimate of a nonlinear regression model. The solution can only be ob-
tained using numerical optimization. In practice, variants of quasi-Newton meth-
ods are used widely across Eurosystem central banks ([48]). The primary down-
side of such methods is that they, in their standard implementation, fail to con-
trol for the possibility of ill-conditioning that occurs for certain parameter ranges
([30]). This can result in pronounced parameter sensitivity, by which small per-
turbations in the data lead to disproportionate effects on parameter estimates. In-
stead of jointly optimizing over both T and B, parameters can be obtained through
nested optimization

minmind_ (417 ,7) ~ ). 42)
i=1

In the formulation, the inner minimization problem can be solved via OLS regres-
sion, while T can be found numerically. The grid search approach involves evalu-
ating the objective function for manually chosen values of T, ultimately selecting
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the one with the most favorable value. The values of T are typically evaluated for
equally spaced points that form a finite grid.! The grid search can effectively find
a good optimum, but often at a high computational cost: as an example, perform-
ing grid search on the NSS model to find the optimal T = (13, %2) would require
solving m? ordinary least squares optimization problems, where m is the number
of points to be evaluated for each component of T parameter.? In addition to being
computationally demanding, this approach may often lead to erratic changes in
estimated parameters ([3]).

The second approach involves linearizing the objective function by fixing the
nonlinear shape parameter 7 to a prescribed value. This reduces (4.1) to OLS
optimization

N
. Y (B'x(ti) —vi)?, (4.3)
i=1

where B = (Bo, - .-, Br)’ is the vector of parameters and x(t;) = (xo(;), ..., xx(t;))’
is the vector of model basis functions evaluated at t;.> While k and the form of
individual basis functions x; () will depend on the underlying model, the form
of the optimization objective (4.3) remains the same. This formulation implies a
linear projection model

Y = B'x(T) +e,
E[x(T)e] =0, (4.4)
B = (E[x(T)x(T)']) " (E[x(T)x(T)']),

where T, e are random variables reflecting residual maturity and error, respec-
tively.

Although it inevitably comes at the expense of in-sample fit, the fixed 7 ap-
proach has several benefits. First, eliminating nonlinearity from the functional
form enables obtaining a simple closed-form expression for the globally optimal
B (for a given 7). It also enables one to justify the use of linear methods to com-
pute statistics such as confidence intervals and leverage (which can be used in
outlier detection). Second, constant T ensures that basis curves remain the same,
which ensures both inter-temporal and cross-sectional comparability of parame-
ters. Inter-temporal comparability is particularly relevant in case yield curves are
estimated across multiple periods and analyzed in a time series context. Cross-
sectional comparability is required if yield curve parameters associated with dif-
ferent issuers are to be meaningfully compared against each other or, perhaps, ag-
gregated.* Third, allowing T to vary may lead to increased parameter instability

U1f 7 is a scalar, equally spaced points in a finite interval are evaluated; if it is a vector, a Cartesian
product of such intervals for each of the components can be used.

2Evaluating all multiples of 0.5 in the interval [0,30] would require (30/0.5)> = 3600 such
evaluations.

3The model basis function x : R — REK+Dx1 jg 4 (deterministic) vector function of time T,
which is assumed to be a random variable.

4 Aggregation of multiple yield curves may be relevant, for example, in the problem of obtaining
a representative yield curve of the euro area.
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([3]), reinforcing the issue of reduced comparability. Finally, the reduction of in-
sample fit brought on by fixing T may not be significant in practice ([46]), which
is also demonstrated in Chapter 5. However, when fixing T, it is hardly possible
to conclusively justify any particular choice, so determining its value remains as
the primary challenge. Along the lines of the previously discussed interpretation
of T, higher values typically result in more curve flexibility in the longer end of
the curve, while the converse holds for lower values. Annaert, De Ceuster, and
Zhang observed that when performing grid search over [0, 10] for the NS model,
in the majority of days between 1999 and 2009, the optimal value of T was in the
interval [0, 4]. They also observed increased ill-conditioning coupled with param-
eter instability for higher values of T ([3]). Diebold and Li fixed T = 1.37 ([20])°>,
while Fabozzi, Martellini and Priaulet used T = 3 ([26]).

4.1 Estimation in the presence of fixed-coupon bonds

As mentioned previously, in many practical situations, a sufficiently sized sample
of zero-coupon bonds may not be available. Even in cases when it is, one may
still prefer to use a larger sample (one that is not restricted only to zero-coupon
bonds) to obtain a more reliable estimate.

In addition to the principal paid at maturity, fixed-coupon bonds pay a prede-
fined (fixed) cash amount, coupon, at predefined points in time before maturity.
The fair price of a risk-free bond at the time t with a principal value of 1 and a
fixed coupon payable annually, is given by

t
p(t,c) = exp (—ty(t)) +c ) exp (—sy(s)), (45)
s=1
where f is the residual maturity, ¢ is the coupon rate, and y(t) is the continu-
ously compounded annual interest rate at maturity ¢. In the special case of a zero-
coupon bond (when ¢ = 0), the second term vanishes and the expression reduces
to (3.1). If the bond is coupon-bearing, it is generally impossible to solve for yield
y(t) in (4.5). Intuitively, this is because the bond’s fair price also depends on un-
known zero-coupon yields y(1),...,y(t —1).

Yield-to-maturity (or redemption yield), which can also be computed for
fixed-coupon bonds, is the bond’s internal rate of return. More precisely, it is
defined as the discount rate y); at which the present value of the bond’s future
cash flows (i.e., principal and coupon payments) is equal to the bond’s price p.
Formally, it solves the equation

t
p=exp (—tyrm) +c Z exp (—syrm), (4.6)

s=1

for a given price p, residual maturity ¢, and a coupon rate c. Since a closed-form
expression for y1); does not exist, the equation can only be solved numerically. If

°The original paper uses A = 0.0609, which is used to multiply (rather than divide) the residual
maturity expressed in months (rather than years). Therefore, the equivalent T can be obtained
withT = [124) ! = 1.37.
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the coupon rate is equal to zero, the expression reduces to the standard closed-
form expression for the zero-coupon bond price.

The implicit simplifying assumption in (4.6) is that the yield curve is flat, i.e.
that y(1) = ... = y(t) = yrm. Yield-to-maturity of a bond with a price p can,
therefore, be described as the level yrys of a hypothetical flat yield curve under
which the bond’s fair price is equal to its actual price p. This impairs the compara-
bility of yield-to-maturity with zero-coupon yields: if the true zero-coupon yield
curve used to price the bond is not flat, its yield-to-maturity will not coincide with
the zero-coupon yield at maturity t. Intuitively, this is because yield-to-maturity
also depends on zero-coupon yields before maturity ¢.

To illustrate the lack of comparability, assume that the true zero-coupon yield
curve is known and that it is strictly increasing. When pricing a fixed-coupon
bond under such a yield curve, coupon payments maturing earlier will be dis-
counted with a lower rate of interest compared to their counterparts maturing
later. Since yield-to-maturity is the single discount rate at which all coupons are
discounted, it would need to account for the lower discount rate on coupons re-
ceived before maturity. Consequently, its yield-to-maturity will be lower than the
zero-coupon yield associated with the bond’s residual maturity t. The more the
bond’s coupons contribute to its value, the more skewed the yield-to-maturity will
be toward the zero-coupon yields before maturity.® Conversely, if the yield curve
is strictly decreasing, yield-to-maturity will be higher than the zero-coupon yield
for bonds with identical maturity. With simple algebraic manipulations, it can be
shown that if the investor acquires a fixed-coupon bond and reinvests all received
coupons at a rate equal to y7y, the average annual yield, calculated from the ac-
cumulated amount at maturity ¢, would equal yry. This property of yield-to-
maturity (which can also be used as its definition) better illustrates why yields-to-
maturity are not directly comparable to equivalent zero-coupon yields. Neverthe-
less, when the sample contains fixed-coupon bonds, comparing observed yields-
to-maturity to those implied by the estimated zero-coupon yield curve provides
a useful goodness-of-fit measure.

Zero-coupon yield curve can be estimated from a sample containing coupon-
bearing bonds by minimizing squared yield-to-maturity errors. Assuming fixed
7, obtaining optimal B would require solving a modified version of (4.1)

N
mﬁin Y (9t (B) —yra)* (4.7)
i=1

where {71, (B) is the yield-to-maturity of the i-th bond in the sample, each com-
puted by discounting with a zero-coupon yield curve y(t; ). One should note
that, unlike in (4.1), the sample contains fixed-coupon bonds whose yield-to-
maturity needs to be computed numerically by solving (4.6).” Solving (4.7) is,
therefore, computationally demanding, as the computation needs to be repeated
for all bonds in each step of the iterative optimization procedure.

®This is known as the coupon effect ([12]).

7In practice, the computation of yield-to-maturity function is more nuanced. Factors such as
accrued interest, the duration of settlement, and day count conventions (which may differ between
bonds) need to be accounted for.
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A more simple formulation is to minimize price error instead of yield error
S 2
H}Bin ) (Pi(B) — pi)*. (4.8)
i=1

This approach eliminates the need to compute the yields-to-maturity numerically
but does not render the problem linear since the price of a fixed-coupon bond
(4.5) depends nonlinearly on the zero-coupon yield curve and, therefore, . The
model implied by (4.8) is

P=DP(T;B) +e, (49)
Ele|T] = 0.

The main issue with this model formulation is that price errors are heteroscedas-
tic, as the error variance increases for bonds maturing farther in the future ([9]).
This is why price error minimization has been shown to result in suboptimal es-
timates of yield-to-maturity for short-term bonds ([48]). Weighted least squares
can be used to offset the increasing variance and reduce the bias to longer-term
bonds. Most commonly, inverse bond durations are used as weights ([48]). In
practice, (4.7) and (4.8) are typically solved with an iterative procedure based on
the gradient and (quasi-) Newton methods ([48]).

As an alternative to minimizing yield-to-maturity or price error, one may look
for ways to transform the sample to obtain the underlying zero-coupon bond
prices. This would reduce the fitting problem to OLS. The standard approach
for doing so is the bootstrapping method ([25]). The technique constructs zero-
coupon yields iteratively, starting with the shortest and progressing toward bonds
with longer maturities. Typically, it is assumed that the zero-coupon yields up to a
certain (short) maturity m(*) are known. These zero-coupon yields can be derived
from short-term debt securities, which are usually zero-coupon. The zero-coupon
yield y**1) in the next iteration at longer maturities is then obtained by equating
the (k + 1)-st bond’s price p*+1) with its present value and solving for its (zero-
coupon) yield y*+1)

k
D — exp (_y(k+1)m(k+1)) + Y cexp <_y(7)m<f)> , (4.10)
j=1

In case of sufficient availability of quality data, the bootstrapping technique pro-
duces internally consistent prices, in the sense that there are no opportunities for
arbitrage within the sample ([25]). However, in many practical cases, the bond
sample may not include bonds at the precise maturities required to accurately
compute rates for discounting coupon payments. Furthermore, the prices of indi-
vidual bonds can be affected by multiple nuisance effects, such as bond liquidity
differences, measurement errors, and tax effects. These effects are propagated to
subsequent iterations, resulting in increasingly inaccurate zero-coupon yield esti-
mates. Alternatives based on linear programming have been proposed to address
these issues ([1]).
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4.2 Iterated OLS approach

In this chapter, we outline an alternative approach to solving (4.3) given a hetero-
geneous sample consisting of both zero- and fixed-coupon bonds. The detailed
analysis is presented in [10].

As noted previously, unlike prices, bond yields are not observed directly. For
this reason, the yield curve needs to be estimated from a sample of bonds, where
for each bond b; we know

e its market price, p;
e its residual maturity ¢;

e its coupon rate expressed as a percentage of the principal amount, c;.

For simplicity, this configuration assumes that all coupons are paid at times
1,...,t;. The analysis can be easily generalized to account for different coupon
frequencies and accrued interest (if the bond is valued in between coupon pay-
ments). The final coupon is usually paid with the unit principal and therefore
has residual maturity equal to t;. Formally, the yield curve is estimated from a
sample of bonds {by,...,by}, with b; = (p;, t;, ¢;). In the case of a yield of a zero-
coupon bond, y; is uniquely determined by its price p; and residual maturity ¢; via
(3.2). This is not the case for fixed-coupon bonds, for which yield has no natural
definition as discussed in Section 4.1.

In the iterated OLS method, this issue is addressed with coupon stripping.®
Coupon stripping is a method to transform the prices of coupon-bearing bonds
to obtain their equivalent zero-coupon prices, i.e. their hypothetical prices if they
weren’t paying a coupon. The coupon-stripped price can be obtained by rewriting
(4.5)

t t
p(t,c) = exp (—ty(t)) +c ) exp (=sy(s)) = p(t,0) + ¢ ) exp (=sy(s)), (411)
s=1 s=1
and solving for the zero-coupon component p(t,0). This gives the expression for
the bond’s coupon-stripped price as price less the present value of its coupon pay-
ments
t

p(t,0) = p(t,c) —c ) exp(—sy(s)). (4.12)
s=1
Since the values of coupon-stripped prices depend on the yield curve y(t; B) used
to discount the coupon payments, coupon-stripped prices can be written as func-
tions of B

t

p(t,0;B) = p(t,c) —c ) exp(—sy(s; B))- (4.13)

s=1

8While in this context, “coupon stripping” refers to the estimation of the present value of the
principal payment (i.e., the zero-coupon component of the bond), the term can also refer to the
act of splitting the bond into two separately tradeable securities, each representing its coupon
and principal. These securities are called STRIPS (Separate Trading of Registered Principal and
Interest Securities).
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Since the true B* is not known, an approximation B(°) can be used to estimate the
coupon-stripped price. After applying (4.13) to replace all coupon-bearing bonds
with their coupon-stripped equivalents, the resulting sample of coupon-stripped
prices can be transformed via (3.1) to consist exclusively of zero-coupon yields.
The updated estimate B(!) can then be obtained by solving (4.3). Provided that
convergence criteria are fulfilled, repeating this process results in successively im-
proving estimates of zero-coupon prices (yields) and, by extension, yield curves
y(t; B) that are estimated from these samples. In summary, the procedure can be
viewed as a series of two-step iterations:

1. first, generate a sample of zero-coupon prices (yields) by stripping coupons
from fixed-coupon bonds using the current yield curve estimate y(t; 8());

2. second, estimate the subsequent zero-coupon yield curve estimate y(t; (+1))
from the generated zero-coupon bond sample.

The first step requires an initial approximation (%), If estimations are performed
sequentially, the previous period’s estimated yield curve can be used as the ini-
tial B(°). However, as discussed in Section 4.2.1 and exemplified by the empirical
study, the convergence of the method does not appear to be very sensitive to the
choice of the initial approximation.

A similar approach that combines bootstrapping with estimation in a single
procedure was presented and applied to an interpolation model in [32].

To present a more formal derivation and establish convergence criteria, we
show that the described procedure can be implemented as the fixed point iter-
ation method for solving a system of equations.

4.21 Convergence

The fixed point iteration method attempts to solve a system of equations of the
form

a= G(a), (4.14)

where a € R" and G : R" — IR" is a nonlinear function. Starting from the
initial estimate a(%), the method produces a sequence of iterations a(*1) = G(a(")
which is hoped to converge to a fixed point. A fixed point 4 is defined as the
solution to (4.14)

a = G(a). (4.15)

The existence of a (unique) solution is therefore equivalent to the existence of a
(unique) fixed point. The fixed point iteration method converges under the con-
ditions of the Banach fixed-point theorem, which requires that G : D — D is a
contraction, i.e. that there exists a g € [0,1) such that

d(G(a),G(b)) < gd(a,b), (4.16)
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for some metricd : D — R. When the domainis D C R", an equivalent condition
on the L, matrix norm of the Jacobian G can be used to verify the contraction

property

IGB)Il2 < g. (4.17)
For A € R"*", the L, matrix norm ||-||2 : R"*" — R is defined as
|All2 = sup [|Ay]2- (4.18)
lyll2=1
If (4.17) holds, G is a contraction with respect to the L, metricd(a,b) = ||a —b||,.
For a sample of zero-coupon bonds b; = (p;, t;), the sum of squared errors

from (4.3) can be equivalently rewritten using zero-coupon bond prices instead
of yields

Fp =) (Brt) - Lmpr)

i=1

N 1 2
o (ﬁ/x(tz)+t—lnp,) 7

i=1

(4.19)

where x : Rf — REFDX1 x(t) = (x(t), ..., xx(t))’ maps residual maturity to
model factors. If bonds in the sample are assumed to pay a fixed coupon ¢;,” the
zero-coupon yield curve can be estimated from coupon-stripped prices.

. 2
FiB) =), (,B'x(t) lln — ¢ Zexp —spB'x( ))) : (4.20)

i=1 £

Intuitively, minimizing F(pB) corresponds to finding a curve of the form y(t; B) =
B'x(t) which, if used to strip the coupons from fixed-coupon bonds, best fits (in
the least-squares sense) the zero-coupon yields derived from the coupon-stripped
prices. The minimum of F(pB) does not have a closed-form expression.

We can allow the coupons to be stripped by a possibly different zero-coupon
yield curve y(t; B))

N

t; 2
F(B) =} (ﬁ’x(ti) +t1l_1n<pz- —ci L exp (—sﬁ<°>'x<s>)> SN VA

i=1

If we fix B(?), the expression Do) (B) = F(B,B") becomes a sum of squared
residuals of a linear model, allowing us to obtain a closed-form expression for its
global minimum using normal equations

0=2 Zx ( )'B Ly ln (pz- —ig Zi;exp <—sﬁ(0)’x(s))>> (4.22)
4 : "
— <Z x(ti)x(ti)’> ;x(ti)t_i In (pi — ¢ ;exp <—sﬁ(0)’x(s)>) (4.23)

9In this case, bonds are assumed to be represented by triplets b; = (p;, ti, c;)
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By setting B(1) = B and generalizing for arbitrary k, an iterative procedure can be
defined

B = Gn (BW), (4.24)

where

N -1 N 1
_ (; x(ti)X(ti)’> ;x(ti)t_iln ( —C; Zexp 5’3 x(s )))
- - (4.25)

Provided that the necessary conditions hold for Gy, Banach fixed-point theorem
implies that the series <,3(k)> converges to a unique fixed point

B = lim B® = lim Gy (ﬁ(k_1)> = Gn ( lim ﬁ<k—1>> = Gn(f).  (4.26)
k—rc0 k—o0 k—oo

The prices (and yields) of zero-coupon bonds are unaffected by stripping. There-

fore, if the sample consists of purely zero-coupon bonds, the fixed point is found

trivially and is equivalent to OLS. When the sample includes fixed-coupon bonds,

itis reasonable to assume that in almost all practical scenarios, (4.25) will be a con-

traction and ( ,B(k)) will converge to a unique fixed point. A heuristic argument of

why this is the case is based on the observation that coupons typically contribute
to a fraction of the value of fixed-coupon bonds on average. Since parameter f to
the function Gy determines the yield curve used to strip the coupons, a change in
its value can induce only a comparatively smaller change in the optimal param-
eters Gy(p) that are estimated from the coupon-stripped sample. The presence
of zero-coupon bonds, whose yields are unaffected by the parameter g, would
further diminish the impact of the parameter on the value of Gy /().

To illustrate the argument, we examine a simple case requiring three assump-
tions:

1. First, the yield curve is modeled with an intercept-only model y(t; ) = B,
B € R, i.e. ahorizontal line. This implies that the polynomial basis is a scalar
x(t) = 1, from which it follows that

N — 1
<; x(ti)x(ti)'> = =5 (4.27)

2. Second, we assume that no bond pays the final coupon at maturity (without
loss of generality).! Formally, each bond in the sample with maturity #; pays
its coupons at times 1, ...,t; — 1.

10 Although it is typical for bonds to pay the final coupon together with the principal payment
at maturity, this simplifying assumption does not affect the calculations below, as discussed in
Remark 3.
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3. Finally, we assume that there exists an interval I = (a,b) such that, for each
bond in the sample, the present value of its coupons valued under y(t; B) =
B, B € Iis no more than k; > 0 times the bond’s price

ti—1

¢ Y exp(—sp) < kipi = cl Z exp(—sB) <p;, k;i€[0,1) (428)
s=1

Applying the triangle inequality, from (4.27) and (4.28), we have

d 1Y oY sexp(—sp)
=G = £=
‘dﬁ N(ﬁ)’ Nigy <Pi_ci22 1leXP( 55))
. 9 fseXp( sB) (4.29)
- N (k=1 — 1D)tic; Zt" 1 exp(—sp)
S A Ly sexp(—sp) |
N S| A=kt yilexp(—sB)
Expressions
Yoy sexp(—sp) (4.30)

Yi ) exp(—sp)

can be interpreted as weighted averages of coupon maturities, with weights
w(s) = exp(—spB). (4.30) is also equivalent to the definition of bond duration,
with the only difference being that, in this case, it is calculated exclusively from
coupon payments. If the yield B is non-negative, w(s) is a non-increasing func-
tion of maturity. Consequently, since lower maturities are weighted higher, the
weighted average cannot exceed the simple arithmetic average

t;—1

Y Bexpl— S‘B) i t(t D _ & 431
e el

2He—1) 2
Since all values are positive, the same inequality holds for absolute values. Com-
bining (4.29) and (4.31), we have

d . 1 al
apN

The right-hand side expression in some sense reflects the average contribution of
coupons to bonds’ prices in the sample. Lower average contributions translate
to the lower sensitivity of the estimated interest rate G () to the interest rate 8

under which coupons are stripped. For example, if we set an upper bound k; <
g < %, we have

N
E (4.32)
1

21—

1

N
dﬁGN(m‘ < N;mkfk) <q<1 (433)
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because f(x) = ﬁ is strictly increasing. The assumption k; < g < % would
imply that the present value of coupons contributes to less than two-thirds of the
total value of a bond. While this will almost certainly be true for bonds with short
maturities (and trivially true for zero-coupon bonds), it may not necessarily hold
for longer-dated bonds with high coupon rates. However, all bonds don’t need to
tulfill this requirement, but rather on average. It is reasonable to expect that this is

indeed fulfilled in practice.

Remark 3. If the final coupon payment is paid together with the principal (which is the
general norm in practice), this can be treated as a single rather than two separate payments.
Consequently, only coupons paid before maturity ought to be stripped. In that case, the
final payment is assumed to equal 1 + c, and coupons are assumed to be paid at times
excluding the bond maturity 1,...,t — 1. Incorporating this into the expression for Gy
(4.25), we get

o N — ;Y L exp (—spBx(s
GN<ﬁ>=—<zx(t,->x<t,->') zx(m%ln(% 1L X (=P <>>>

i=1 i=1 i 1+c¢;
(4.34)
N 1N 1 ti—1
== (;x(ti)X(ti),) Z%x(ti)t—i In (pi — ¢ Z; exp (—sﬁ’x(s)))
| | S (4.35)
N 1IN i
s (Z; x(ti)x(ti)/) .Zix(ti)t_i In(1+c)) (4.36)

Since the second term (4.36) does not depend on B, the exclusion of the final coupon
payment does not impact the computation of the Jacobian (4.29).

The presented argument is heuristic and is not theoretically rigorous. More-
over, the bounds used are not the tightest possible and represent conservative ap-
proximations. The convergence is empirically demonstrated in Chapter 5, where
the method is applied to estimate the NSS and OLP models on historical data.

The yield curve estimate obtained via this iterative procedure is internally con-
sistent, in the no-arbitrage sense. By construction, the yield curve estimated via
iterated OLS is the curve that best fits the zero-coupon yields of the coupon-
stripped sample, with the coupon-stripping performed using the same optimal
yield curve. It can be verified empirically that this property does not generally
hold for yield curves obtained using (4.8) and (4.7). In the case of the boot-
strapping procedure, the zero-coupon yield estimates of bonds within the sam-
ple are consistent, but not necessarily when out-of-sample zero-coupon yields are
included. To illustrate a particular kind of inconsistency that the yield curve es-
timated via iterated OLS doesn’t suffer from, consider a simple example where a
yield curve 7(t) is estimated from a sample of bonds observed without errors, us-
ing (4.7). If (t) is used to strip the sample and the yield curve §syippeq(t) obtained
from that coupon-stripped sample differs from j(¢) at some residual maturity ¢*,
an arbitrage opportunity will emerge. An arbitrage portfolio would consist of a
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coupon bond with residual maturity +* and short-sold coupon payments.'! This
portfolio would replicate a zero-coupon bond with residual maturity t* but with a
different yield than (#*). As a result, risk-free profit can be realized. In short, the
arbitrage emerges as a consequence of the inconsistency between the rate at which
coupons are discounted and the zero-coupon yields. The iterated OLS approach
achieves this consistency by construction.

Finally, we note that this method is substantially less computationally complex
to execute compared to (4.7), which requires the gradient and yields-to-maturity
for the whole sample to be computed numerically at each step.

Covariance matrix and confidence intervals Without explicitly computing it,
we can demonstrate that the k-th fixed point iteration ¥} appears to have a re-
duced variance

Varg [B%) — g = Varﬁ[GN(,B(k_l)) — B
~ Varg[Gn(B) (B* ) — B)] (4.37)
= Gn(B)(B* ) = B)GN(B)-

Due to the contraction property of Gy(B), applying matrix norm sub-
multiplicativity, we have the following bound for the norm of the covariance ma-
trix

[Vars 89 — B[, < 1Gn (B, ||B%2 - B, En(BY]l, < 2 [ 8% — B .
(4.38)

The L, matrix norm is equivalent to the spectral norm, defined as the largest eigen-
value ||Alj2 = 0max(A). Based on this, the squared norm of a covariance ma-
trix can be interpreted as the maximum variance explained by a single principal
component. The relation (4.38) therefore implies that iterations have a variance-
reducing effect in the L, sense. Estimates of the covariance matrix and the related
statistics (e.g. regression intervals) may be considered conservative.

4.2.2 Estimating equations

The described iterated OLS approach may be analyzed using the concept of esti-
mating equations. Estimating equation is defined as

gn(0) =0, (4.39)

where gy is the estimating function that depends on the sample of size N and
some statistical parameter 6 € ® C R”. The dependence on the sample is sup-
pressed from the notation for convenience. We can define an estimator 8y as the
solution to the equation (4.39). It is usual to assume that the estimating equation
(4.39) is unbiased ([52]) in the sense that

!1Since each coupon payment can be treated as a zero-coupon bond, it can be short-sold for the
interest rate implied by the zero-coupon yield curve §(t).
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To reformulate the iterated OLS method in terms of estimating equations,
(4.14) can be rewritten as

def

gn(B) = Gn(B) —B=0. (4.41)

We now proceed to specify the model under which the estimating equation
(4.41) is unbiased. Let the yield of a zero-coupon bond be generated by the model

_ pl
Y= B8x(T)4e (4.42)
Ele|T] = 0.
By applying (3.1), the price of a zero-coupon bond is generated by
P =exp (—T(B'x(T

Ele|T] = 0.

If the bond has a fixed coupon with a (deterministic) coupon rate c, from (4.5),
the corresponding model is

T
P=exp (~T(B'x(T) +e)) +c ;exp (—sp'x(s)), (4.44)

Ele|T] = 0.

Remark 4. Given that fixed-coupon bonds are theoretically equivalent to portfolios of zero-
coupon bonds, the price of a fixed-coupon bond in (4.44) could have included an error term
in the yield at which coupon payments are valued

ji
P=exp (—T(B'x(T)+e)) +c)_ exp (—s(B'x(s) +es)). (4.45)
s=1

This formulation would imply that the bond’s principal payment and individual coupon
payments are all stochastic, as they would carry a specific (idiosyncratic) error term. In
contrast, the model (4.44) treats the present value of the principal (the zero-coupon com-
ponent) as stochastic, and the present value of coupon payments (the coupon component)
as deterministic.

If the bond prices are generated by (4.44), from the unbiasedness of the OLS
estimator, we have

N 1y
Eg[Gn(B)] = Eg —<;x(Ti)x(Ti)’> Zx(T T —CZZexp —sB/x(s ))]

N —1 N 1
el (Zx(T,-)x(Ti)’> Y- x(T;) 7 In (exp(~T;(B'x(T;) +e:)))

i=1 i
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The second equality holds due to the coupon-stripping term canceling out the
actual contribution of coupons to the bond’s value. Equation (4.46) implies that
the estimating equation (4.41) is unbiased

Eglgn(B)] = Eg[Gn(B)] — B =0, VB. (4.47)

Being a more general concept, the unbiasedness of the estimating equation does
not imply the unbiasedness of the associated estimator . However, under ad-
ditional assumptions, consistency and asymptotic normality follow ([19], [38],
[43]). Jacod and Serensen ([36]) provide the following general result for the con-
sistency of Oy.

Theorem 1. Assume that the following conditions hold for a parameter value 6* € int ©
(the interior of @), a neighborhood M of 0*, and a (possibly random)) RP-valued function
g on M:

1. gn(6%) 5 0as N — oo (convergence in probability under the true probability
measure IP) and g(6*) = 0.

2. gn and g are P-almost surely continuously differentiable on M, and as N — oo

sup |gn(8) — £(8) |2 = 0. (4.48)
0eM

3. The Jacobian gn (6% ) is P-almost surely nonsingular.

Then, the sequence of estimators (8y), defined as roots to the estimating equation
gn(0n) = 0, converges in probability to 8* as N — co. Moreover, if (8%;) is any other
sequence of gn-estimators that converges in probability to 0%, then P(8}, # On) — 0as
N — oo,

The Condition (2) can be verified under stricter but more easily verifiable as-
sumptions using the result from [47] (Corollary 2.2 and the accompanying dis-
cussion).

If gn satisfies the conditions from Theorem 1, the iterated OLS estimator ,3 N
is consistent. Under additional assumptions on gy, the associated estimator is
asymptotically normal ([36]).



5 | Empirical study

This chapter aims to empirically complement the theoretical discussion of yield
curve modeling and fitting provided in Chapter 3 and Chapter 4. While the empir-
ical characteristics of NS-class yield curve models are mostly known, an empirical
evaluation of the OLP model presented in Section 3.2 has, to my knowledge, not
been conducted, despite the model’s appealing theoretical properties. In light of
this, the primary objective of this empirical study is to compare the performance
of the OLP model to the widely used NSS model. The analysis focuses purely
on comparing the adequacy of the respective models’ functional forms in a raw
setting. Due to its relevance for practical implementations of NS-class models,
special attention is given to exploring the role of the exponential decay parame-
ter T in mediating the trade-off between flexibility (i.e., goodness of fit) and the
stability of model parameters.

5.1 Data selection

The bond dataset used in the empirical study includes daily closing prices of se-
lected German government bonds in the period between December 2013 and De-
cember 2023, provided by MTS Markets.! The model evaluation is conducted on
a set of 130 trading days, evenly spaced throughout the 10-year time period un-
der consideration. The choice of the German bond population is motivated by the
general perception of German bonds as proxies for the euro area risk-free rate. A
stable level of low credit risk also contributes to sample homogeneity across time.
Two additional selection criteria are applied to the initial bond population:

e Only zero-coupon and fixed-coupon bonds are selected. Bonds with special
features (e.g., inflation-linked bonds, variable-coupon bonds) are excluded.

e Given the standard practice of reporting yields up to 30 years, bonds with
longer residual maturity are excluded. Bonds with residual maturity shorter
than three months are likewise excluded due to their generally higher volatil-

ity ([48]).

After selection, the number of bonds on each of the 130 days in the dataset aver-
ages 65.78 and ranges between 48 and 78.

Imtsmarkets.com

7
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Figure 5.1: Descriptive statistics of the dataset: sample structure by residual matu-
rity and coupon type (left); pointwise (data-based) estimates of the median yield
curve with 25% and 75% quantiles (right)

5.2 Results

The performance of OLP(4), OLP(5), and the NSS model was analyzed. All mod-
els are estimated using the iterated OLS procedure presented in Section 4.2. The
estimations are performed sequentially, where the parameters estimated in one
period serve as the starting values for the iterated OLS in the next period.

The criteria against which models are evaluated are stability and flexibility.

e Stability relates to the reliability of parameter estimates and their dynamic
properties. The possibility of erratic behavior of NS(S) model parameters
is a well-known property of these models and is generally deemed undesir-
able. Such behavior, particularly when exhibited by By, diminishes parame-
ters” economic relevance and interpretability.

e Flexibility relates to models’ ability to fit a wide range of possible yield
curve shapes. The ideal level of flexibility achieves the right balance between
goodness-of-fit and the capacity to generalize out of the sample.

5.2.1 Stability

Being the exponential decay parameter, T controls how the curvature of basis
curves is spread along the maturity axis: lower values of T imply faster decay,
resulting in curvature being concentrated at shorter maturities (Figure 5.2).

Remark 5. In the case of the NSS model where T = (7, T2) is not scalar, relational
qualifications such as "lower” and "higher” generally refer to either of the two individual
components Ty, To.
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Figure 5.2: OLP fourth basis curve (left); NSS third/fourth basis curve (right)

Consequently, the role of T can be understood as determining the trade-off be-
tween the flexibility to fit the short and the long end of the maturity spectrum
(Figure 5.3). This can be directly observed by its effect on goodness of fit in dif-

— T=35 31 . ——pe={{i; iR

== TEAE . —-- 1=(1,2)
3.0 :

28

Yield

26

24

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Residual maturity Residual maturity

Figure 5.3: Optimal curve for different 7, OLP(5) (left) and NSS (right)

ferent maturity ranges (Figure 5.4, Figure 5.5).

Perhaps unsurprisingly, T also affects the inter-temporal stability of estimated
parameters. Stability is often conveniently gauged from the time series dynamics
of By, which is the implied long-term (asymptotic) interest rate. For high values of
T, Bo exhibits erratic behavior (Figure 5.6; left figure) that is unlikely, from an eco-
nomic standpoint, to reflect the actual dynamics of long-term interest rates. How
T affects stability is closely related to its effect on the curvature of basis curves,
which can extend beyond 30 (years) for high values of 7. However, no bonds with
residual maturity longer than 30 years are included in the sample. This results in
possible overfitting of the long end of the curve, leading to poor generalization ca-
pacity, particularly when it comes to extrapolating the yield curve to longer resid-
ual maturities. This is evidenced by unreasonable values of 8, which represents
the implied long-term yield prediction. The reasoning also generalizes to a setup
that doesn't explicitly set a residual maturity limit, as the number of bonds with
maturities longer than 30 years is zero or very low. The observed property can
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Figure 5.4: Average RMSE (whole dataset) for different 7, per maturity range,
OLP(4) (left) and OLP(5) (right)
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Figure 5.5: Average NSS RMSE, 3M to 5Y (left) and 20Y to 30Y (right) maturity
ranges
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Figure 5.6: By time series under different models, higher 7 (left) and lower T
(right)

equivalently be seen as a consequence of ill-conditioning of the covariance matrix
at higher values of T (Figure 5.7).
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This behavior can be, and often is, addressed by constraining model parameters
or reducing the likelihood of unrealistic changes in their values. In the dynamic
variants of NS(S) models, this is achieved by assuming that parameters follow a
vector autoregressive process under which high-magnitude jumps are assumed to
be unlikely ([20]). Such an approach can be thought of as a form of regularization.
However, since the primary purpose of this analysis is to evaluate the adequacy
of different functional forms in fitting the yield curve, approaches that rely on any
form of prior information are not considered. A final production model may well
incorporate such, or similar features that further improve its empirical properties.

10000.0 20.0
—— OLP (5) 19.0
---= OLP (4) 17.0

1000.0

100.0

Condition number

2NOAPOONPOOSNWAC
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Figure 5.7: Average covariance matrix condition number for different T, OLP(4),
OLP(5) (left) and NSS (right)

Given the impact of 7, the methodology used to estimate it has a direct effect
on the performance of the model. The dramatically different behavior of optimal
P parameters implied by different values of T underscores the nuance and care
required in estimating it. A common approach is to use grid search to find a value
that results in optimal goodness-of-fit. However, optimal values of T may vary
substantially between days, giving rise to intermittent jumps in By (Figure 5.8;
left figure).

Aside from directly constraining the dynamics of B with prior information, the
stability issue can be mitigated by constraining T not to assume values that lead to
instability. If 7 is allowed to vary but is constrainedby 0 < 7 < 5(0 < 7y, » < 5in
the case of NSS), the variability of B is markedly decreased compared to when
is searched within the full grid.> However, varying 7 inevitably results in temporal
inconsistency as B parameters estimated at different periods may no longer be
associated with the same basis curves. This questions the applicability of time
series methods.

Fixed T configuration

If Tis fixedtoavaluein0 < 7 <5 (0 < 7y, 2 < 5in the case of NSS) that
results in the lowest average RMSE over the whole period, the variability of B is

2The full grid includes values of T (or both 7y and 7 on the case of NSS) that are within the
range that is likely to contain the global optimum.
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Figure 5.8: By time series if T is estimated using grid search, full grid search (left),
and reduced grid search (right)

further decreased in comparison to when 7 is constrained but allowed to vary be-
tween periods. In addition, By assumes similar values across models (Figure 5.8;
right figure), and the time series do not exhibit any apparent visual features that
would contradict the expected temporal characteristics of long-term interest rates.
The improved stability and generalization capacity can also be seen for the very
short rates, with the fixed-T models achieving closer alignment to the ECB deposit
facility rate in the rate increase period between March 2022 and December 2023
(Figure 5.9). Since only bonds with residual maturity of no less than 3 months
are included in the estimation sample, the short-term rate estimate can be seen as
an out-of-sample prediction.

4 —— ECB deposit facility rate _ 4 —— ECBdeposit facilityrate [
————— OLP (5), T=3 2 ---= NSS, t=(1,2)
3 Mesmes OLP (5), T free g M NSS, 7 free

Implied short rate

Jul 2022 Nov 2022 Mar 2023 Jul 2023 Nov 2023 Jul 2022 Nov 2022 Mar 2023 Jul 2023 Nov 2023
Time Time

Figure 5.9: Model-implied short rate versus ECB deposit facility rate, OLP(5)
(left) and NSS (right)

5.2.2 Flexibility

Goodness-of-fit statistics numerically summarize the discrepancy between ob-
served zero-coupon yields y,...,yy, and the corresponding model estimates
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J(t1),...,9(tn). As part of the model flexibility evaluation, three statistics are
considered:

e Root mean squared error

N
RM&:,J$ (yi — 9(t:))?, (5.1)
i=1
e Mean absolute error
1N
MAE = & Y T — g, (5.2)
=l

e Hit rate, defined as the fraction of observed yields that deviate no more than
5 basis points (0.05 percentage points) from the corresponding estimates

. g .
Hit rate = N 1:21 I(y; —14(8)), (3.3)
where

1, —0.05<x<0.05
Hx)=={0 (5.4)

X otherwise.
Two grids in which 7 is searched are considered: the full and the reduced grid.

e The full grid considers values that are likely to contain the globally optimal
value of 7.

e The reduced grid considers values of T that lead to a reasonable level of sta-
bility, as shown previously.

Model | Reduced grid Full grid

OLP(4) | 05<T<5 05<T<20

OLP(5) | 05<T<5 05<T1<10

NSS 05< < <5|05<u<n<2

Table 5.1: Grid search configuration

The additional constraint in the NSS model 77 < 1 is used to reduce the param-
eter search space, which would otherwise be very large. The constraint is natural
given that the motivation to extend the NS model with an additional curvature
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Model | RMSE MAE Hit rate
OLP(5) | 0.033193 | 0.023835 | 88.8762%
OLP(4) | 0.035853 | 0.026334 | 86.8876%
NSS 0.032863 | 0.023677 | 88.4831%

Table 5.2: Summary of error statistics, if T is estimated with full grid search

term (with 1 as its exponential decay) was precisely to increase the flexibility of
the long end of the curve. This constraint is also suggested in [50].

Maximal model flexibility is achieved if T is estimated using full grid search,
in which case the NSS model outperforms both OLP models in RMSE and MAE,
while the OLP(5) model has a superior hit rate (Table 5.2). However, the dif-
ferences between OLP(5) and NSS are not considerable. If the values of T that
contribute to instability are excluded (in the reduced grid), the OLP(5) model
achieves superior performance (Table 5.3) across all goodness-of-fit statistics.
Moreover, the overall flexibility of OLP(5) dropped only slightly under the re-
duced compared to the full grid search.

Model | RMSE MAE Hit rate

OLP(5) | 0.033229 | 0.023935 | 88.7978%
OLP(4) | 0.037833 | 0.027746 | 85.0411%
NSS 0.037409 | 0.027441 | 84.7082%

Table 5.3: Summary of error statistics, if T is estimated with reduced grid search

Fixed T configuration

Determining the value to which to fix 7 is far from straightforward. The approach
used in this empirical study involves finding a value from the reduced grid for
which, if T is fixed to that value, the average RMSE across the whole period is
minimal. In this setup, the OLP(5) outperforms by a wide margin (Table 5.4).
While the performance is similar for simpler shapes, more complex shapes are not
well captured by either OLP(4) or NSS (Figure 5.10). The NSS model could fit
the more complex shape if 7 is free and unconstrained, but that would inevitably
come at a cost of inter-temporal consistency and stability, as discussed previously.
OLP(5), on the other hand, can fit the complex shape reasonably well without
sacrificing theoretical properties and introducing nonlinearity and nonconvexity.
Moreover, fixing T to a prescribed value constrains the set of possible yield curve
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Model | Optimal 7 fixing | RMSE MAE Hit rate
OLP(5) | T=3 0.035213 | 0.025038 | 88.5952%
OLP(4) =15 0.045322 | 0.034311 | 81.3514%
NSS T=(1,2) 0.044291 | 0.032983 | 82.2092%

Table 5.4: Summary of error statistics, if 7 is fixed through the whole period

1.25
1.00 3=
0.75
0.50

0.25

Yield

0.00

-0.25
—— OLP(5)
-~ OLP (4)

-0.50

-0.75
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Residual maturity Residual maturity

Figure 5.10: Fitting a simple (left) and a complex yield curve shape (right)

shapes. If the value is chosen carefully, the resulting model will be more robust
and less prone to overfitting. Figure 5.12 illustrates that the lowest total RMSE
may be achieved for curves that do not appear to capture the trend in the data
evenly across the full maturity spectrum, compared to the fixed-t setup.

Finally, fixing T to a prescribed value has the unique benefit of allowing one to
easily and more reliably generate confidence regions (Figure 5.11).

5.3 Conclusions

The analysis demonstrated the T-mediated trade-off between the flexibility to fit
the short versus the long end of the yield curve. Higher values of T, which were
shown to be associated with relatively better long-end fitting, were also shown
to contribute to higher instability, particularly the intercept term By or the im-
plied long-term interest rate. Different approaches to estimating T were explored
to evaluate the nature of the trade-off between flexibility and stability. If T is es-
timated with a full grid search, NSS and OLP(5) demonstrated similar perfor-
mance. However, erratic behavior of g was observed in all models, the degree of
which is not desirable in practice regardless of the goodness of fit. If T is searched
in a reduced grid with values resulting in reasonable levels of stability, OLP(5)
demonstrated superior performance across all statistics. Under the fixed-t con-
figuration, the OLP(5) model was superior, while the NSS model experienced
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equality

a substantial drop in flexibility. Fixed-t configuration carries a set of particular
benefits, including

e higher level of stability;

e inter-temporal consistency of basis curves, which enables one to use the pa-
rameter time series in a broader modeling context;

e linearity of the estimation problem, which implies the existence of a unique
solution and the possibility to apply linear methods (e.g., to compute param-
eter confidence regions, in outlier detection, etc.).

Although fixing T to a prescribed value inevitably leads to a reduction in model
flexibility, the loss is not as prominent in OLP(5), particularly in comparison to
NSS. However, the fact that the RMSE (or any other statistic) under fixed 7 could
be improved under a different T may not necessarily mean that the estimated yield
curve would be more accurate. Idiosyncratic and stochastic factors that may be un-
related to actual interest rate dynamics can result in a different value of T being
optimal. Fixing the value of 7, therefore, constrains the ability of the yield curve
to assume atypical shapes and shift in unlikely ways. In this sense, fixed T config-
uration acts as a form of implicit regularization.
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Abstract

The European Central Bank (ECB) relies on the timely availability of high-quality
financial market indicators to facilitate data-driven decision-making. Gauges of
interest rate dynamics are of particular interest to the central bank, given their rel-
evance for monetary policy and financial stability. By capturing the term structure
of interest rates, zero-coupon yield curves serve as the key barometer of market ex-
pectations of monetary policy, economic growth, and inflation. Correspondingly,
the prevailing practice among major central banks, including the ECB, is to main-
tain an internal system for estimating yield curves. This thesis aims to contribute
to three areas relevant to implementing such systems. First, a natural generaliza-
tion of the Nelson-Siegel model based on Laguerre polynomials is evaluated as an
alternative to the popular Svensson extension. The evidence from the conducted
evaluation study points to several theoretical and empirical arguments in favor
of such an approach, particularly in the areas of model stability, flexibility, and
out-of-sample forecasting performance. Second, the empirical study evaluates
the nature of the trade-off between goodness-of-fit and model stability resulting
from applying different methodologies to estimating the nonlinear decay param-
eter. Finally, a computationally efficient method based on iterated least-squares is
considered for fitting the zero-coupon yield curve to a sample containing fixed-
coupon bonds, under a fixed nonlinear decay parameter. The method provides an
alternative to the common practice of minimizing either yield-to-maturity error or
(weighted) price error.

Keywords

yield curve, term structure, Nelson and Siegel model, Svensson model, Laguerre
polynomials, curve fitting, coupon stripping, empirical study
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