Sveučilište J. J. Strossmayera u Osijeku
Odjel za matematiku
Sveučilišni nastavnički studij matematike i informatike

Martina Bošnjaković

Prijateljski i savršeni brojevi

Diplomski rad

Osijek, 2019.
Martina Bošnjaković

Prijateljski i savršeni brojevi

Diplomski rad

Mentor: izv. prof. dr. sc. Ivan Matić

Osijek, 2019.
<p>|
|---|</p>
<table>
<thead>
<tr>
<th>Sadržaj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uvod i</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1 Znanost u 17. stoljeću</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1.1 Marin Mersenne</td>
</tr>
<tr>
<td>1.1.1 Mersenneovi brojevi</td>
</tr>
<tr>
<td>2 Savršeni brojevi</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>2.1 Parni savršeni brojevi</td>
</tr>
<tr>
<td>2.1.1 Fermatovi brojevi</td>
</tr>
<tr>
<td>2.1.2 Euler i savršeni brojevi</td>
</tr>
<tr>
<td>2.1.3 Svojstva parnih savršenih brojeva</td>
</tr>
<tr>
<td>2.2 Neparni savršeni brojevi</td>
</tr>
<tr>
<td>2.3 Savršeni brojevi oblika $n^2 + 1$</td>
</tr>
<tr>
<td>3 Prijateljski brojevi</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>3.1 Thabitovo pravilo</td>
</tr>
<tr>
<td>3.1.1 Eulerovo pravilo</td>
</tr>
<tr>
<td>3.1.2 Borbovo pravilo</td>
</tr>
<tr>
<td>3.1.3 Wiehausovo pravilo</td>
</tr>
<tr>
<td>3.2 Prijateljski brojevi posebnog oblika</td>
</tr>
<tr>
<td>3.2.1 te Rieleovo pravilo</td>
</tr>
<tr>
<td>3.3 Poznati prijateljski brojevi</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Literatura 35</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Sažetak 36</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Summary 37</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Životopis 38</td>
</tr>
</tbody>
</table>
Uvod

U ovom diplomskom radu vidjet ćemo što su savršeni i prijateljski brojevi, upoznat ćemo njihova svojstva i posebne oblike.

Na početku rada napravljen je kratki pregled razvoja znanosti i matematike u 17. stoljeću. Opisana je uloga Marina Mersennea u razvoju znanosti i razmjeni znanstvenih otkrića među matematičarima diljem Europe, te su spomenuti brojevi koji su po njemu dobili ime, odnosno Mersenneovi brojevi.

U drugom poglavlju definiramo savršene brojeve, opisujemo njihov razvoj od antičkih vremena pa sve do danas, te navodimo prve poznate savršene brojeve. Zatim se upoznajemo sa parnim savršenim brojevima, te naglasak stavljamo na Fermatov i Eulerov doprinos u njihovom otkrivanju. Nadalje, opisujemo četiri svojstva parnih savršenih brojeva, te se upoznajemo sa neparnim savršenim brojevima. U zadnjem dijelu drugog poglavlja pokazujemo da je 28 jedini savršeni broj oblika $n^a + 1$.

1 Znanost u 17. stoljeću

U 16. stoljeću vrlo je malo ljudi bilo zainteresirano za matematiku i znanost općenito. Oni koji su se bavili znanosti najčešće su to radili u izolaciji jer znanost kao zanimanje tada nije bila cijenjena. Osim knjiga, za učene ljudje nije bilo drugog načina da ostanu u kontaktu jedni s drugima. Objavljivanje radova bilo je otežano zbog crkvenih cenzura. Međutim, s vremenom se sve više ljudi počelo baviti znanosti što se očitovalo u snažnom napredu znanja i brzini novih otkrića. Zbog neprekinutog testiranja ideja odbaćene su ranije postavljene hipoteze jer su se razvojem znanosti pokazale netočnima. Na taj način znanost se održavala živućom.

Prva akademija koja se posvetila znanosti utemeljena je u Napulju 1560. godine pod nazivom Accademia Secretorum Naturae. Cilj akademije bio je okupiti skupinu intelektualaca (znanstvenika) kako bi raspravljali o temama od zajedničkog interesa. No, rad akademije crkvi se činio sumnjivim tako da je vrlo brzo zatvorena. Ovaj kratkotrajni pokušaj formalne znanstvene organizacije prethodio je osnivanju nove akademije Accademia dei Lincei. Osnovana je 1603. godine u Rimu s ciljem otkrivanja novih znanstvenih ideja i otkrića, te njihovog objavljivanja svijetu. Akademija se sastojala od samo četiri člana sve dok se 1610. nije reorganizirala i povećala svoj opseg. Jedan od novih članova bio je i priznati znanstvenik Galileo. Accademia dei Lincei objavila je nekoliko knjiga među kojima su dvije Galileove knjige. Unatoč raznim usponima i padovima kroz koje je prolazila, akademija djeluje i danas te je vodeća znanstvena organizacija u Italiji.

1.1 Marin Mersenne

Iako su se prve znanstvene organizacije pojavile u 16. stoljeću u Italiji, tek u 17. stoljeću dolazi do pravog procvata znanstvenih udušenja neovisnih o sveučilištima. Prvi slučajevi redovitog okupljanja matematičara za koje znamo zabilježeni su zahvaljujući Marinu Mersenneu.

Slika 1.1. Marin Mersenne

Marin Merseme je imao ideju postaviti stupac žive na vrh planine i promatrati učinak atmosferskog tlaka. Međutim, prije nego što je uspio realizirati svoj plan, Pascal je proveo eksperiment i dokazao da visina stupca žive varira s visinom. Isto tako, Mersenne je imao značajnu ulogu u popularizaciji Galileovih istraživanja diljem Europe. Budući da se talijanski jezik slabo razumio u inozemstvu, 1634. godine
objavio je verziju Galileovih predavanja o mehanici, a 1639. preveo je Discorsi na francuski. Zanimljivo je da je to učinio iako je bio vjerni član katoličkog reda i crkve koja je u to vrijeme bila u neprijateljskom odnosu prema znanosti.

1.1.1 Mersenneovi brojevi

Osim što se bavio znanosti i okupljao znanstvenike iz cijele Europe, Marin Mersenne opsežno je proučavao brojeve oblika $2^n - 1$. U skladu s tim, brojevi takvog oblika nazvani su Mersenneovi brojevi i označavaju se M_n. Prvih nekoliko Mersenneovih brojeva su $M_1 = 1$, $M_2 = 3$, $M_3 = 7$, $M_4 = 15$, $M_5 = 31$, $M_6 = 63$, $M_7 = 127$ i $M_8 = 255$ iz čega je vidljivo da su neki od njih prosti, a neki složeni. Mersenneovi brojevi koji su prošli zovu se Mersenneovi prosti brojevi.

Tek 1772. godine Leonhard Euler pokazao je da je M_{31} prost tako što je proverio sve proste brojeve do 46339 kao moguće djelitelje, ali tu metodu nije mogao
upotrijebiti na brojevima M_{67}, M_{127} i M_{257}.

Do 1947. godine testirani su svi brojevi oblika $2^n - 1$ za $n \leq 257$. Tek tada je bilo poznato koje je greške Mersenne napravio. Neispravno je zaključio da su M_{67} i M_{257} prosti, a brojeve M_{61}, M_{89} i M_{107} je isključio sa svoje liste prostih brojeva.

Razvojem modernih računala pronalazak većih Mersenneverovih brojeva postao je lakši i uspješniji. 1952. godine otkriveno je pet novih Mersenneverovih brojeva: M_{521}, M_{607}, M_{1279}, M_{2203} i M_{2281}. 1957. i 1961. godine otkriveni su M_{3217}, M_{4253} i M_{4423}. U sklopu Sveučilišta Illionis u Urbana - Champaignu 1963. godine pronađena su tri nova Mersenneverova broja. Zanimljivo je da su se nakon otkrića ti brojevi u obliku žiga pojavljivali na poštanskoj markici grada Urbana. (Slika 1.2. Poštanska marka)

![Slika 1.2. Poštanska marka](image)

Do 2014. godine otkriveno je 48 Mersenneverovih prostih brojeva.
2 Savršeni brojevi

Stari Grci mislili su da savršeni brojevi imaju mistične moći pa su ih stoga smatraли vrlo posebnima. Pitagora i njegovi sljedbenici su broj 6 smatraли simbolom braka, zdravlja i ljepote. Što im je bilo tako mistično oko broja 6? Bili su zaintirirani odnosom između broja i njegovih praviх djelitelja. Naime, primijetili su da je 6 jednako sumi svojih praviх djelitelja (pozitivnih djelitelja, ne uključujući samog sebe), tj. 6 = 1 + 2 + 3.

U skladu sa svojom filozofijom pripisavanja određenih društvenih kvaliteta brojevima, Pitagorejci su brojeve takvog oblika nazvali savršenima.

Definicija 1. *Pozitivan cijeli broj N savršen je broj ako je jednak sumi svojih praviх djelitelja.*

Označimo li sumu svih pozitivnih djelitelja od N (uključujući i N) sa

$$\sigma(N) = \sum_{d|N} d,$$

onda je suma svih pozitivnih djelitelja manjih od N jednaka $\sigma(N) - N$. Iz toga proizlazi uvjet, odnosno definicija:

Definicija 2. *Prirodan broj N je savršen ako je $\sigma(N) - N = N$, tj.*

$$\sigma(N) = 2N.$$
Na primjer, uzmemo li da je \(N = 6 \) imamo da je
\[
\sigma(6) = 1 + 2 + 3 + 6 = 2 \cdot 6.
\]
Za \(N = 28 \) slijedi da je
\[
\sigma(28) = 1 + 2 + 4 + 7 + 14 + 28 = 2 \cdot 28.
\]
Prema tome, 6 i 28 su savršeni brojevi.

Samo su četiri savršena broja bila poznata starim Grcima. Oko 100. godine poslije Krista, Nicomachus je u svojoj knjizi *Introduction to Arithmetic* brojeve \(P_1 = 6, P_2 = 28, P_3 = 496 \) i \(P_4 = 8128 \) naveo kao savršene brojeve. Zaključio je da su ti brojevi jedini savršeni brojevi u intervalima između 1, 10, 100, 1000 i 10 000, odnosno da postoji jedan jednoznamenkast, jedan dvoznamenkast, jedan troznamenkast i jedan četveroznamenkast savršen broj.

Na osnovi toga zaključeno je:
1. \(n \)-ti savršen broj \(P_n \) sadrži točno \(n \) znamenki;
2. parni savršeni brojevi završavaju naizmjence na 6 i 8.

Obje tvrdnje su pogrešne. Ne postoji savršen broj s pet znamenki. \(P_5 = 33,550,336 \) je sljedeći savršen broj koji ima više od pet znamenki. Iako mu je posljednja znamenka 6, sljedeći savršen broj \(P_6 = 8,589,869,056 \) također završava znamenkom 6, a ne znamenkom 8 kao što je pretpostavljeno. Veličina šestog savršenog broja ukazuje na rijetkost savršenih brojeva, te još uvijek nije poznato ima li ih konačno ili beskonačno mnogo.

Arapski matematičar Ismail ibn Fallus (1194.-1239.) slijedio je Nicomachusov rad, te dao deset savršenih brojeva među kojima su bili peti, šesti i sedmi savršeni broj. Međutim od tih deset brojeva tri su se pokazala netočnima. 1460. godine Johann Mülller Regiomontanus ponovo je otkrio peti i šesti savršeni broj, ali njegovi dokazi o tome dugo vremena nisu bili poznati.
2.1 Parni savršeni brojevi

Određivanje općeg oblika svih savršenih brojeva datira iz antičkih vremena. Dje- lomično je to riješio Euklid u Knjizi IX svojih Elemenata (oko 300. godine prije Krista). Primijetio je da su prva četiri savršena broja specifičnog oblika:

\[6 = 2^1(1 + 2) = 2 \cdot 3 \]
\[28 = 2^2(1 + 2 + 2^2) = 4 \cdot 7 \]
\[496 = 2^4(1 + 2 + 2^2 + 2^3) = 16 \cdot 31 \]
\[8128 = 2^6(1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6) = 64 \cdot 127. \]

Uočimo da nedostaju brojevi

\[90 = 2^3(1 + 2 + 2^2 + 2^3) = 8 \cdot 15 \]

\[2016 = 2^5(1 + 2 + 2^2 + 2^3 + 2^4 + 2^5) = 32 \cdot 63. \]

Euklid je istaknuo da je to zato što su 15 i 63 složeni brojevi, dok su brojevi 3, 7, 31 i 127 prosti.

Osim što su prva četiri savršena broja parna, možemo primijetiti da za umnoške s desne strane jednakosti vrijedi:

\[2 \cdot 3 = 2^1(2^2 - 1) \]
\[4 \cdot 7 = 2^2(2^3 - 1) \]
\[16 \cdot 31 = 2^4(2^5 - 1) \]
\[64 \cdot 127 = 2^6(2^7 - 1). \]

Rezultat ovih tvrđnji je sljedeći Euklidov teorem.
Teorem 1 (Euklid). Ako je broj $2^n - 1$ prost, onda je broj $N = 2^{n-1}(2^n - 1)$ savršen.

Dokaz. Očito je da su $2^n - 1$ i 2 jedini prosti faktori od N. Budući da se broj $2^n - 1$ pojavljuje kao zaseban prost broj, imamo da je

$$\sigma(2^n - 1) = 1 + (2^n - 1) = 2^n.$$

Stoga je

$$\sigma(N) = \sigma(2^{n-1})\sigma(2^2 - 1) = \left(\frac{2^n - 1}{2 - 1}\right)2^n = 2^n(2^n - 1) = 2N.$$

Prema tome, broj N je savršen.

Brojeve oblika $2^{n-1}(2^n - 1)$, gdje je $2^n - 1$ prost, nazivamo Euklidovim savršenim brojevima. Važno je naglasiti da Euklid nije tvrdio da su svi (parni) savršeni brojevi takvog oblika.

Hudalrichus Regius je 1536. godine otkrio prvi prost broj n takav da $2^{n-1}(2^n - 1)$ nije savršen broj. U svojoj knjizi Utriusque Arithmetices pokazao da je $2^{11} - 1 = 2047 = 23 \cdot 89$. Također je ponovo otkrio peti savršeni broj. J. Scheybl otkrio je 1555. godine ponovo šesti savršeni broj, ali to je ostalo neprimijećeno do 1977. godine.

Iako nije bio prvi koji je otkrio peti, šesti i sedmi savršeni broj, talijanski matematičar Pietro Cataldi zaslužan je za njihov pronalazak jer su njegovi dokazi prvi poznati dokazi o tim savršenim brojevima. Dokazao je da ta tri savršena broja redom izgledaju ovako:

$$33 550 336 = 2^{12}(2^{13} - 1)$$
$$8 589 869 056 = 2^{16}(2^{17} - 1)$$
$$137 438 691 328 = 2^{18}(2^{19} - 1).$$

Ovim je dokazom pokazao da Euklidovi savršeni brojevi završavaju sa znamenkama 6 i 8, ali ne naizmjenice kako je to Nicomachus pretpostavio. Osim toga, Cataldi je pretpostavio da je $2^n - 1$ prost za $n = 23, 29, 31$ i 37. 1603. godine je objavio tablicu faktora svih brojeva do 800 s odvojenim popisom prostih brojeva do 750.
2.1.1 Fermatovi brojevi

Izuzetan doprinos u otkrivanju savršenih brojeva dao je 1640. godine Pierre de Fermat. Radom na savršenim brojevima dokazao je da su $2^{23} - 1$ i $2^{37} - 1$ složeni brojevi. Time je pokazao da je Cataldi pogrešno pretpostavio da je $N = 2^{n-1}(2^n - 1)$ savršen broj za $n = 23$ i $n = 37$.

![Pierre de Fermat](image)

Slika 2.1. Pierre de Fermat (1601.-1665.)

Istraživanje o savršenim brojevima Fermat je započeo određivanjem svih prostih brojeva oblika $a^n - 1$, gdje su a i n pozitivni cijeli brojevi. Njegov zaključak dan je u sljedećem teoremu.

Teorem 2. Ako je $a^n - 1$ prost za cijele brojeve $a > 1$ i $n > 1$, tada je $a = 2$ i n prost.

Dokaz. Budući da je $a^n - 1 = (a - 1)(a^{n-1} + a^{n-2} + \cdots + a + 1)$ prost broj i $a - 1 = 1$, slijedi da je $a = 2$. Štoviše, ako je n složen broj, odnosno $n = rs$ za $r > 1$ i $s > 1$, tada je

$$2^n - 1 = 2^r - 1 = (2^r - 1)(2^{s-1} + 2^{s-2} + \cdots + 1).$$

Međutim, svaki je faktor na desnoj strani veći od 1 što je u suprotnosti s činjenicom da je $2^n - 1$ prost. Dakle, n je prost, pa je teorem dokazan.

Nakon što je dokazao uvjete pod kojima je $a^n - 1$ prost, pokazao je kada je $a^n + 1$ prost.

Teorem 3. Ako je $a^n + 1$ prost za cijele brojeve $a > 1$ i $n > 0$, tada je a paran i $n = 2^r$ za pozitivan cijeli broj r.
Dokaz. Pretpostavimo da je \(a^n + 1 \) prost. Kada bi \(a \) bio neparan, vrijedilo bi da je \(a^n + 1 \) paran broj, veći od 3, koji nije prost. Stoga je \(a \) paran broj. Pretpostavimo da \(n \) ima neparni faktor veći od 1, to jest, \(n = rs \), gdje je \(s \) neparan broj veći od 1. Iz toga slijedi da je

\[
a^n + 1 = a^r + 1 = (a^r + 1)(a^{r(s-1)} - a^{r(s-2)} + \cdots - a^r + 1).
\]

Budući da je \(s \geq 3 \), oba faktora od \(a^n + 1 \) su veća od 1, što je u kontradikciji s činjenicom da je \(a^n + 1 \) prost broj. Stoga, \(n \) nema neparnih faktora, pa mora vrijediti \(n = 2^r \).

Brojeve oblika \(2^{2n} + 1 \), za \(n \) nenegativan cijeli broj, nazivamo Fermatovi brojevi i označavamo ih sa \(F_n \). Prvih nekoliko Fermatovih brojeva za \(n = 0, 1, 2, 3, 4 \) izgleda ovako:

\[
F_0 = 3, \quad F_1 = 5, \quad F_2 = 17, \quad F_3 = 257, \quad F_4 = 65537.
\]

Svih pet navedenih brojeva su prosti, pa je Fermat pretpostavio da je \(F_n \) prost za svaki nenegativan cijeli broj \(n \). No, tu tvrdnju opovrgnuo je Leonhard Euler kada je dokazao da je \(F_5 \) složen broj. Ovim problemom stoljećima su se bavili mnogi znanstvenici, te su brojna istraživanja pokazala da su \(F_0, F_1, F_2, F_3 \) i \(F_4 \) jedini Fermatovi brojevi koji su prosti.

Marin Mersenne bio je vrlo zainteresiran za Fermatove rezultate o savršenim brojevima. Počeo ih je detaljno proučavati pa su tako brojevi \(2^n - 1 \) dobili ime po Mersennenu. Budući da je bio posrednik znanstvenih informacija, Mersenne je imao značajnu ulogu u razmjeni otkrića o savršenima brojevima između Bernarda Freniclea i Fermata. Naijemo, Frenicle mu je napisao da je \(2^{37} - 1 \) složen, ali nije uspio pronaći njegove fakte. Fermat je odgovorio da su 223 i 616318177 faktori od \(2^{37} - 1 \). Zatim je Frenicle zatražio od Fermata da pronade savršen broj koji sadrži 20 ili 21 znamenu. Dva mjeseca kasnije, Fermat je odgovorio da takvi savršeni brojevi ne postoje.
2.1.2 Euler i savršeni brojevi

Švicarski matematičar, fizičar i astronom Leonhard Euler, 1732. godine je proširio Fermatovo istraživanje i tvrdio da ako su \(n = 4k - 1 \) i \(8k - 1 \) prosti, tada je \(8k - 1 \) faktor od \(2^n - 1 \). Taj rezultat iskoristio je kako bi dokazao da je \(2^n - 1 \) složen za \(n = 11, 23, 83, 131, 179, 191 \) i 239, te kako bi pronašao djelitelje od \(2^n - 1 \) za \(n = 29, 37, 43, 47 \) i 73. Formalni dokaz ovih tvrdnji dao je Lagrange 1775. godine.

![Leonhard Euler (1707.-1783.)](image)

Silka 2.2. Leonhard Euler (1707.-1783.)

Oko 2000 godina nakon Euklidovog otkrića o savršenim brojevima, Euler je dokazao da su svi parni savršeni brojevi oblika danog u Teoremu 1 (Euklid).

Teorem 4 (Euler). Ako je \(N \) paran savršen broj, onda je \(N \) oblika \(N = 2^{n-1}(2^n - 1) \), gdje je \(2^n - 1 \) prost broj.

Dokaz. Neka je \(N = 2^{n-1} \cdot m \) savršen broj, gdje je \(n \geq 2 \) i \(m \) neparan. Budući da 2 ne dijeli \(m \), \(2^n - 1 \) i \(m \) su relativno prosti, tj. \((2^{n-1}, m) = 1 \). Iz toga slijedi da je

\[
\sigma(N) = \sigma(2^{n-1} \cdot m) = \sigma(2^{n-1})\sigma(m) = \left(\frac{2^n - 1}{2 - 1}\right)\sigma(m) = (2^n - 1)\sigma(m).
\]

Budući da je \(N \) savršen, imamo

\[
\sigma(N) = 2N = 2(2^{n-1}m) = 2^nm.
\]

Te dvije relacije zajedno daju

\[
2^nm = (2^n - 1)\sigma(m).
\]

Budući da je \(2^n - 1 \) neparan, \(2^n - 1 \) dijeli \(m \), pa možemo pisati \(m = (2^n - 1)k \). Sada je

\[
(2^n - 1)\sigma(m) = 2^n(2^n - 1)k,
\]
štò implicira
\[\sigma(m) = 2^n k = (2^n - 1)k + k = m + k. \]

Ali \(k \) dijeli \(m \), pa \(\sigma(m) = m + k \) znači da \(m \) ima samo dva pozitivna djelitelja, \(k \) i \(m \), iz čega slijedi da je \(k = 1 \). Prema tome, \(\sigma(m) = m + 1 \) i \(m \) je prost broj. Budući da \(2^n - 1 \) dijeli \(m \), \(2^n - 1 = m \). Stoga je \(N = 2^{n-1}(2^n - 1) \), gdje je \(2^n - 1 \) prost broj.

Sada je vidljivo da je pronalaženje parnih savršenih brojeva usko povezano uz pronalaženje prostih brojeva oblika \(2^n - 1 \), odnosno Mersenneovih prostih brojeva. Iako ovaj teorem daje izvanrednu formulu za konstruiranje parnih savršenih brojeva, nije poznato postoji li beskonačno mnogo parnih savršenih brojeva.

Euler je znao za prvi sedam savršenih brojeva, \(2^{n-1}(2^n - 1) \) za \(n = 2, 3, 5, 7, 13, 17 \) i 19. Pokazao je 1772. godine da je Mersenneov broj \(M_31 \) prost, stoga je tada otkriven osmi savršeni broj:

\[2^{305843008}139952128 = 2^{30}(2^{31} - 1). \]

Pronalazak novih Mersenneovih i savršenih brojeva i danas je aktualna i zanimljiva tema znanstvenicima diljem svijeta. Istraživanja pokazuju da je do 2018. godine otkriven 51 Mersenneov prost broj, pa stoga i 51 savršen broj. 51. savršeni broj je jednak:

\[2^{82589933}(2^{82589933} - 1). \]
2.1.3 Svojstva parnih savršenih brojeva

U sljedećim propozicijama prikazano je nekoliko svojstava parnih savršenih brojeva.

Prije iskaza prve propozicije, najprije ćemo definirati kada je broj trokutast.

Definicija 3. Kažemo da je T trokutast broj ako vrijedi

$$T = \sum_{i=1}^{k} i = 1 + 2 + \cdots + k = \frac{1}{2}k(k+1) \text{ za neki } k.$$

Propozicija 1. Ako je broj N paran savršen broj, onda je broj N trokutast.

Dokaz. Znamo da su parni savršeni brojevi oblika

$$N = 2^{n-1}(2^n - 1) = \frac{1}{2}2^n(2^n - 1).$$

Neka je $2^n = k + 1$. Sada su parni savršeni brojevi oblika

$$N = \frac{1}{2}(k + 1)(k + 1 - 1) = \frac{1}{2}(k + 1)k.$$

Prema tome, parni savršeni brojevi su trokutasti brojevi. □

Pogledajmo na konkretnom primjeru da to zaista vrijedi.

Primjer 1. Neka je $N = 6$ paran savršen broj, pokaži da je N trokutast.

$N = 6$ je paran savršen broj koji je oblika $2^1(2^2 - 1)$. U ovom je slučaju $n = 2$, pa je $2^2 = k + 1$. Iz toga slijedi da je $k + 1 = 4 \rightarrow k = 3$. Uvrstimo k u izraz $N = \frac{1}{2}(k+1)k$ i dobijemo $N = \frac{1}{2}(3+1)3 = 6$. Paran savršen broj 6 je trokutast.

Na slici 2.3. može se vidjeti prikaz trokutastih parnih savršenih brojeva $N = 6$ i $N = 28$.
Slika 2.3. Trokutasti parni savršeni brojevi \(N = 6 \) i \(N = 28 \)

Propozicija 2. Svaki paran savršen broj završava sa 6 ili 8; to jest, \(N \equiv 6 \pmod{10} \) ili \(N \equiv 8 \pmod{10} \).

Dokaz. Svaki prost broj \(n > 2 \) je oblika \(4m + 1 \) ili \(4m + 3 \). U prvom slučaju,

\[
N = 2^{n-1}(2^n - 1) = 2^{4m}(2^{4m+1} - 1) = 2^{8m+1} - 2^{4m} = 2 \cdot 16^{2m} - 16^m \equiv 2 \cdot 6 - 6 \equiv 6 \pmod{10},
\]

budući da se induktivno lako može vidjeti da vrijedi \(16^t \equiv 6 \pmod{10} \) za svaki pozitivni cijeli broj \(t \).

Slično, u drugom slučaju,

\[
N = 2^{n-1}(2^n - 1) = 2^{4m+2}(2^{4m+3} - 1) = 2^{8m+5} - 2^{4m+2} = 2 \cdot 16^{2m+1} - 4 \cdot 16^m \equiv 2 \cdot 6 - 4 \cdot 6 \equiv -12 \equiv 8 \pmod{10}.
\]

Konačno, ako je \(n = 2 \), onda je \(N = 6 \), i time su pokriveni sve mogućnosti. Prema tome, svaki paran savršen broj ima posljednju znamenku jednaku 6 ili 8. \(\square \)
Sljedeća propozicija daje još precizniji rezultat.

Propozicija 3. Svaki paran savršen broj završava na 6 ili 28.

Dokaz. U prethodnoj propoziciji pokazano je da je \(N \equiv 6 \pmod{10} \) za prost broj \(n \) oblika \(4m + 1 \). Sada trebamo pokazati da ako je \(n \) oblika \(4m + 3 \), onda vrijedi \(N \equiv 28 \pmod{100} \). Primijetimo da je

\[
2^{n-1} = 2^{4m+2} = 16^m \cdot 4 \equiv 6 \cdot 4 \equiv 4 \pmod{10}.
\]

Nadalje, za \(n > 2 \) očito 4 dijeli \(2^{n-1} \), pa je broj koji se sastoji od posljednje dvije znamenke broja \(2^{n-1} \) djeljiv s 4. Situacija je sljedeća: posljednja znamenka broja \(2^{n-1} \) je 4, dok 4 dijeli posljednje dvije znamenke.

Stoga imamo sljedeće mogućnosti:

\[
2^{n-1} \equiv 4, 24, 44, 64, 84 \pmod{100}.
\]

Iz toga slijedi da je

\[
2^n - 1 = 2 \cdot 2^{n-1} - 1 \equiv 7, 47, 87, 27, 67 \pmod{100},
\]

te dobivamo da je

\[
N = 2^n - 1 \equiv 4 \cdot 7, 24 \cdot 47, 44 \cdot 87, 64 \cdot 27, 84 \cdot 67 \pmod{100}.
\]

Preostaje pokazati da su svi dobiveni brojevi kongruentni 28 modulo 100. Za \(4 \cdot 7 = 28 \) je to očigledno. Zatim imamo

\[
24 \cdot 47 \equiv 12 \cdot 94 \pmod{100} \equiv 6 \cdot 188 \pmod{100} \equiv 6 \cdot 88 \pmod{100} \equiv 3 \cdot 176 \pmod{100} \equiv 3 \cdot 76 \pmod{100} \equiv 228 \pmod{100} \equiv 28 \pmod{100}
\]

Preostala tri slučaja mogu se provjeriti na sličan način.

Dokaz. Neka je \(N \) savršen broj. Uočimo da ako \(d \mid N \), onda je \(kd = N \) za neki \(k \), pa je \(k = (N/d) \mid N \). Vrijedi i obrnuto iz čega slijedi da \(d \mid N \) ako i samo ako \((N/d) \mid N \). Sada je

\[
\sum_{d|N} \frac{1}{d} = \frac{\sum_{d|N} (N/d)}{N} = \frac{\sum_{d|N} d}{N} = \frac{\sigma(N)}{N} = \frac{2N}{N} = 2,
\]

čime je dokaz završen. \(\square \)

Primjer 2. Ilustracija Propozicije 4. za \(N = 6, 28, 496. \)

\[
\frac{1}{6} + \frac{1}{3} + \frac{1}{2} + \frac{1}{1} = 2
\]
\[
\frac{1}{28} + \frac{1}{14} + \frac{1}{7} + \frac{1}{2} + \frac{1}{1} = 2
\]
\[
\frac{1}{496} + \frac{1}{248} + \frac{1}{124} + \frac{1}{62} + \frac{1}{31} + \frac{1}{16} + \frac{1}{8} + \frac{1}{4} + \frac{1}{2} + \frac{1}{1} = 2.
\]

2.2 Neparni savršeni brojevi

Postoji li beskonačno mnogo parnih savršenih brojeva pitanje je koje je ostalo ne-
riješeno sve do danas. Međutim, to nije jedini neriješeni problem vezan uz savršene
brojeve. Mnogi znanstvenici stoljećima pokušavaju dokazati postoje li neparni
savršeni brojevi. Iako su postavljeni mnogi uvjeti koje bi neparan savršen broj
\(N \) trebao zadovoljavati, još uvijek nije pronađen niti jedan takav broj.

Prvi uvjet dao je Euler, koji je pokazao da je svaki neparan savršen broj \(N \) oblika

\[
N = p^k q_1^{2a_1} q_2^{2a_2} \ldots q_r^{2a_r},
\]

gdje su \(p, q_1, q_2, \ldots, q_r \) različiti neparni prosti brojevi i \(p \equiv k \equiv 1 \pmod{4} \).
Teorem 5 (Euler). Neka je \(N \) neparan sačvršen broj. Tada je faktorizacija od \(N \) oblika \(N = p^{a_1^1}q_1^{2a_1^2}q_2^{2a_2^2} \cdots q_r^{2a_r^2}, \) gdje je \(p \equiv 1 \) (mod 4).

Dokaz. Neka je \(N = l_1^{e_1}l_2^{e_2} \cdots l_s^{e_s} \) za neke proste brojeve \(l_1, l_2, \ldots, l_s \). Budući da je \(N \) neparan, svi \(l_i \) su neparni. Konačno, \(\sigma(N) = 2N \). Budući da je

\[
\sigma(N) = \sigma(l_1^{e_1}l_2^{e_2} \cdots l_s^{e_s}) = \sigma(l_1^{e_1})\sigma(l_2^{e_2}) \cdots \sigma(l_s^{e_s}),
\]

promatramo \(\sigma(l_i) = 1 + l_i + l_i^2 + \cdots + l_i^e \), sumu \(e + 1 \) neparnih brojeva, koja je neparna samo ako je \(e \) paran. Kako je

\[
\sigma(l_1^{e_1}l_2^{e_2} \cdots l_s^{e_s}) = \sigma(l_1^{e_1})\sigma(l_2^{e_2}) \cdots \sigma(l_s^{e_s}) = 2^{e_1}l_1^{e_1}l_2^{e_2} \cdots l_s^{e_s},
\]

imamo samo jedan faktor jednak 2. Stoga su parni svi \(e_i \) osim jednog, recimo \(e_1 \). Prema tome, \(N = l_1^{e_1}q_1^{2a_1} \cdots q_r^{2a_r} \).

Nadalje očito vrijedi da \(2 \mid \sigma(l_1^{e_1}) \), ali \(4 \nmid \sigma(l_1^{e_1}) \). Budući da je \(l_1 \) neparan, \(c_1 \) je neparan. Sada vidimo da vrijedi ili \(l_1 \equiv 1 \) (mod 4) ili \(l_1 \equiv -1 \) (mod 4). Ali ako je \(l_1 \equiv -1 \) (mod 4), onda vrijedi

\[
\sigma(l_1^{e_1}) = 1 + l_1 + l_1^2 + \cdots + l_1^{e_1-1} + l_1^{e_1} \\
\equiv 1 + (-1) + 1 + \cdots + 1 + (-1) \\
\equiv 0 \pmod{4},
\]

što je očito kontradikcija budući da \(4 \nmid \sigma(l_1^{e_1}) \). Prema tome, \(l_1 \equiv 1 \) (mod 4). Sada vrijedi

\[
\sigma(l_1^{e_1}) = 1 + l_1 + l_1^2 + \cdots + l_1^{e_1-1} + l_1^{e_1} \\
= 1 + 1 + 1 + \cdots + 1 + 1 \\
= e_1 + 1 \pmod{4}.
\]

Budući da je \(e_1 \) neparan, vrijedi ili \(e_1 + 1 \equiv 0 \) (mod 4) ili \(e_1 + 1 \equiv 2 \) (mod 4). Ako je \(e_1 + 1 \equiv 0 \) (mod 4), onda \(4 \mid \sigma(l_1^{e_1}) \) što je kontradikcija. Prema tome, \(e_1 + 1 \equiv 2 \) (mod 4) onda i samo onda ako je \(e_1 + 1 = 4e + 2 \), odnosno, \(e_1 = 4e + 1 \). Sada slijedi da je

\[
N = p^{4e+1}q_1^{2a_1} \cdots q_r^{2a_r}, \text{ za } p \equiv 1 \pmod{4},
\]

čime je dokaz završen. \(\square \)
Svaki neparan savršen broj može se zapisati u obliku

\[N = p^k q_1^{2a_1} \cdots q_r^{2a_r} = p^k (q_1^{a_1} \cdots q_r^{a_r})^2 = p^k m^2. \]

Korolar 1. Ako je \(N \) neparan savršen broj, onda je \(N \) oblika \(N = p^k m^2, \) gdje je \(p \) prost broj, \(p \nmid m, \) te \(p \equiv k \equiv 1 (mod 4). \) Posebno, \(N \equiv 1 (mod 4). \)

Dokaz. Jedino posljednja tvrdnja još nije dokazana. Budući da je \(p \equiv 1 (mod 4), \) imamo \(p^k \equiv 1 (mod 4). \) Primijetimo da \(m \) mora biti neparan. Stoga je \(m \equiv 1 (mod 4) \) ili \(m \equiv 3 (mod 4). \) Nakon kvadriranja vrijedi \(m^2 \equiv 1 (mod 4). \) Sada slijedi

\[N = p^k m^2 \equiv 1 \cdot 1 \equiv 1 (mod 4). \]

James Sylvester je 1888. godine pokazao je da ne postoji neparan savršen broj koji ima manje od 6 različitih prostih faktora, te da ne postoji neparan savršen broj koji nije djeljiv s 3, a ima manje od 8 različitih prostih faktora.

Rudolf Steuerwald je 1937. godine pokazao da ako je \(N = p^k q_1^{2a_1} \cdots q_r^{2a_r} \) neparan savršen broj, gdje su \(p, q_1, \ldots, q_r \) različiti neparni prosti brojevi i \(p \equiv 1 (mod 4), \) onda ne mogu svi \(a_i \) biti jednaki 1; to jest, ako je \(N = p^k q_1^2 \cdots q_r^2 \) neparan broj s \(p \equiv 1 (mod 4), \) onda \(N \) nije savršen. Zatim je 1941. godine Hans-Joachim Kanold pokazao da ne mogu svi \(a_i \) biti jednaki 2, niti može jedan \(a_i \) biti 2 dok su svi ostali jednaki 1. Peter Hagis, Jr. i Wayne L. McDaniel su 1972. godine dokazali da ne mogu svi \(a_i \) biti jednaki 3. Fouglas E. Iannucci i Ronald M. Sorli dokazali su 2003. godine da ako vrijedi \(a_i \equiv 1 (mod 3) \) i \(a_i \equiv 2 (mod 3) \) za sve \(i, \) onda \(3 \nmid N. \)

Franuski matematičar J. Touchard je 1953. godine tvrdio da neparan savršen broj \(N \) mora biti oblika \(12k + 1 \) ili \(36k + 9. \) Pedeset godina kasnije, W. Chau pokazao je da ako \(N = 36k + 9, \) onda \(N \) mora biti i oblika \(108k + 9, 108k + 35 \) ili \(324k + 81. \) Zatim, tvrdio je da neparan savršen broj \(N \) mora imati najmanje 8 različitih prostih faktora. Ako \(N \) ima točno osam različitih prostih faktora, tada najmanji prosti faktor mora biti 3, 5 ili 7.

kasnije G. L. Cohen i P. Hahgis Jr. dokazali su da je najveći prosti faktor neparnog savršenog broja veći od 10^6. Paul A. Weiner 2000. godine je tvrdio da ako vrijedi $3\sigma(n) = 5n$ za neki cijeli broj n, onda je $5n$ neparan savršen broj.

Vidimo da se većina suvremenih istraživanja neparnih savršenih brojeva temeljila na određivanju njihove veličine, te na rastavu na proste faktore. Među matematičarima postoji uvjerenje da takvi brojevi ne postoje, međutim, samo bi dokaz njihovog nepostojanja takva uvjerenja zaista i potvrdio.

2.3 Savršeni brojevi oblika $n^n + 1$

Primjer 3. Pronadite sve savršene brojeve oblika $n^n + 1$.

Neka je $N = n^n + 1$.

1. slučaj:
Neka je n neparan. Budući da je N paran savršen broj, N mora biti oblika $N = 2^{n-1}(2^n - 1)$, gdje je $2^n - 1$ prost.

Očito je da se N može faktorizirati kao $N = n^n + 1 = (n + 1)r$, gdje je $r = n^{n-1} - n^{n-2} + \cdots - n + 1$.

Sada tvrdimo da je $(n + 1, r) = 1$, to jest, da su relativno prosti. Da bismo to pokazali, primijetimo da je n neparan, pa je $n + 1$ paran, a r neparan. Neka je $n + 1 = 2^st$, gdje je t neparan cijeli broj ≥ 1, tada je $N = 2^s tr$. Budući da je N paran savršen broj, to je moguće samo ako je $t = 1$. Iz toga slijedi da je $n + 1 = 2^s$, pa je $(n + 1, r) = 1$.
(Kada bi $r = 1$, tada je $N = n^n + 1 = n + 1$, pa bi $n = 1$. Dobili bi da je $N = 2$, što nije savršen broj.)

Budući da je $N = 2^{n-1}(2^n - 1) = (n + 1)r = 2^s r$, gdje je $2^s - 1$ prost i r ne-
paran,

\[2^a = 2^{m-1} = n + 1 \]

\[r = 2^m - 1 = 2 \cdot 2^{m-1} - 1 = 2(n + 1) - 1 = 2n + 1. \]

Stoga je,

\[N = n^n + 1 = (n + 1)(2n + 1) = 2n^2 + 3n + 1. \]

Iz toga slijedi da je

\[n^n = 2n^2 + 3n \]

\[n^{n-1} = 2n + 3. \]

Budući da je \(n \) cijeli broj, ova jednadžba ima jedinstveno rješenje: 3, koje se može vidjeti na slici (Slika 2.4. Geometrijsko rješenje jednadžbe \(n^{n-1} = 2n + 3 \)). Tada je \(N = 3^3 + 1 = 28 \). Dakle, 28 je jedini parni savršeni broj takvog oblika.

\[Slika \ 2.4. \ Geometrijsko \ rješenje \ jednadžbe \ n^{n-1} = 2n + 3 \]

2. slučaj:
Neka je \(n \) paran i \(n = 2k \). Tada je \(N \) neparan, \(n^n \) kvadrat nekog broja i \(n^n \equiv -1 \ (\text{mod} \ N) \).

Tvrdimo da \(3 \mid N \), za pretpostavku \(3 \mid N \). Tada je \(n^n \equiv -1 \ (\text{mod} \ 3) \) iz čega slijedi

\[(2k)^{2k} \equiv -1 \ (\text{mod} \ 3) \]

\[4^k \cdot k^{2k} \equiv 2 \ (\text{mod} \ 3) \]

\[1 \cdot k^{2k} \equiv 2 \ (\text{mod} \ 3) \]

\[k^{2k} \equiv 2 \ (\text{mod} \ 3). \]
Očito, $k \not\equiv 0$ ili 1 modulo 3. Ako je $k \equiv 2 \pmod{3}$, onda kongruencija $k^{2k} \equiv 2 \pmod{3}$ daje

$$2^{2k} \equiv 2 \pmod{3}$$
$$4^k \equiv 2 \pmod{3}$$
$$1 \equiv 2 \pmod{3},$$

što nije moguće. Dakle, k ne može biti kongruentan s 0, 1 ili 2, što je nemoguće, pa $3 \not| N$. Prema Touchardovom teoremu svaki neparni savršeni broj ima oblik $12m + 1$ ili $36m + 9$ za neki cijeli broj m. Ako je $N = 36m + 9$, onda $3 \not| N$, što je kontradikcija. Stoga, $N = 12m + 1$, to jest, $n^n = 12m$. Budući da $3 \not| 12m$, $3 \not| n^n$, pa $3 \not| n$. Dakle, imamo $2 \not| n, 3 \not| n$, pa slijedi da $6 \not| n$.

Neka je $N = a^6 + 1$, gdje je $a = n^{\frac{5}{6}} > 1$. Tada se N može faktorizirati kao

$$N = (a^2 + 1)(a^4 - a^2 + 1).$$

Pokažimo da su ti faktori od N relativno prosti. Neka je p zajednički prosti faktor od $a^2 + 1$ i $a^4 - a^2 + 1$. Budući da je

$$a^4 - a^2 + 1 = (a^2 + 2a^2 + 1) - 3a^2$$
$$= (a^2 + 1)^2 - 3a^2$$
$$= (a^2 + 1)^2 - 3(a^2 + 1) + 3,$$

$p \not| 3$, to jest, $p = 3$. To implicira $3 \not| N$, što je kontradikcija, pa su faktori $a^2 + 1$ i $a^4 - a^2 + 1$ relativno prosti. Osim toga, N je neparan, pa su oba faktora također neparna.

Budući da je N savršen, a σ multiplikativna funkcija, $N = (a^2 + 1)(a^4 - a^2 + 1)$ vrijedi

$$\sigma(N) = \sigma(a^2 + 1)\sigma(a^4 - a^2 + 1).$$

Sada je,

$$2N = \sigma(a^2 + 1)\sigma(a^4 - a^2 + 1).$$

Budući da je N neparan, jedan od faktora također mora biti neparan. Ali, ako su m i $\sigma(m)$ oboje neparni, onda je m kvadrat nekog broja. Iz toga slijedi da je
$a^2 + 1$ ili $a^4 - a^2 + 1$ kvadrat nekog broja. Međutim, $a^2 < a^2 + 1 < (a + 1)^2$ i $(a^2 - 1)^2 < a^4 - a^2 + 1 < (a^2)^2$, tako da niti jedan od njih ne može biti kvadrat nekog broja, što je kontradikcija.

Prema tome, nema neparnih savršenih brojeva oblika $n^n + 1$, pa je 28 jedini savršeni broj takvog oblika.
3 Prijateljski brojevi

Drugi tip brojeva, čija povijest seže od starih Grka pa sve do danas, su *prijateljski brojevi*. Prijateljski brojevi su bili važni u magiji i astrologiji, određivanju horoskopa, te smišljanju ljubavnih napitaka. Grci su vjerovali da ti brojevi imaju poseban utjecaj na uspostavljanje prijateljstva između dvije osobe.

Definicija 4. *Par brojeva* \((m,n)\), *gdje su* \(m\) i \(n\) *prirodni brojevi i* \(m < n\), *naziva se prijateljski ako je svaki od brojeva* \(m\) i \(n\) *zbroj djelitelja drugog broja.*

Prvi otkriveni prijateljski brojevi bili su 220 i 284. Za njihovo otkriće zaslужni su Pitagora i njegovi sljedbenici. Budući da su Pitagorejci brojevima pripisivali razne vrline i društvene kvalitete, određene brojeve nazvali su prijateljskim brojevima. Kada je Pitagori postavljeno pitanje što je prijatelj, on je odgovorio „drugi ja“. Što je to značilo u numeričkom smislu? Naime, primijenimo li definiciju 4. na primjeru brojeva 220 i 284, dobivamo sljedeće:

Pozitivni djelitelji broja 220 su 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 i 110. Zbrojimo li navedene djelitelje dobijemo broj 284, tj.

\[
1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284.
\]

Budući da su pozitivni djelitelji od 284 brojevi 1, 2, 4, 71 i 142, slijedi da je

\[
1 + 2 + 4 + 71 + 142 = 220.
\]

Neka su \(m\) i \(n\) prirodni brojevi. Suma svih pozitivnih djelitelja manjih od \(m\) jednak je \(σ(m) - m\), a suma svih pozitivnih djelitelja manjih od \(n\) jednak je \(σ(n) - n\). Iz toga proizlazi sljedeća definicija:

Definicija 5. Za *prirodne brojeve* \(m\) i \(n\) *kažemo da su prijateljski ako vrijedi* \(σ(m) - m = n\) i \(σ(n) - n = m\), tj.

\[
σ(m) = m + n = σ(n).
\]

Povežemo li prijateljske brojeve sa savršenim brojevima, vidimo da su savršeni brojevi prijateljski sami sa sobom.
Spominjanje broja 220 može se pronaći i u Knjizi Postanka. Naime, Biblijski komentatori primijetili su simboliku broja 220 u broju Jakovljevih darova bratu Ezavu kojem je poklonio 200 koza i 20 jaraca, kako bi osigurao njegovu naklonost i prijateljstvo.

3.1 Thabitovo pravilo

Prvo eksplcitno pravilo za pronalaženje određenih prijateljskih brojeva priznaje se arapskom matematičaru devetog stoljeća, Thabit ibn Qurra. Osim što se bavio matematikom, Thabit ibn Qurra bio je fizičar, astronom i prevoditelj. Pravilo za pronalazak prijateljskih brojeva njegov je najveći doprinos u matematici.

![Slika 3.1. Thabit ibn Qurra (836.-901.)](image)

Thabitovo pravilo. *Ako su tri broja* \(p = 3 \cdot 2^{n-1} - 1, q = 3 \cdot 2^n - 1 \) \(i \) \(r = 9 \cdot 2^{2n-1} - 1 \) *neparni i prosti, te* \(n > 1 \), *onda su* \(2^{n}pq \) \(i \) \(2^{n}r \) *prijateljski brojevi.*

Za \(n = 2, 4, 7 \) ovo pravilo daje tri prijateljska para: \((220, 284), (17296, 18416) \) \(i \) \((9363584, 9437056) \). Drugi i treći prijateljski par otkrili su Fermat i Descartes. Fermat je 1636. godine poslao pismo Merenmeu u kojem je napisao da su za \(n = 4 \), te proste brojeve \(p = 23, q = 47 \) \(i \) \(r = 1151, 17296 \) i 18416 prijateljski brojevi. Dvije
godine kasnije, Descartes je napisao Mersenneu da je pronašao treći prijateljski par (9363,584, 9437,056), za $n = 7, p = 191, q = 383$ i $r = 73727$. Nije otkriven niti jedan drugi par prijateljskih brojeva, manjih od $2 \cdot 10^{10}$, koji je zadovoljavao Thabitovo pravilo.

3.1.1 Eulerovo pravilo

Leonhard Euler je 1742. godine generalizirao Thabitovo pravilo na pravilo koje pronalazi sve prijateljske parove oblika $(2^n p q, 2^n r)$. Njegovo pravilo glasi:

Eulerovo pravilo. $2^n p q i 2^n r čine prijateljski par ako su $p = 2^{n-1} f - 1, q = 2^n f - 1$ i $r = 2^{n-1} f^2 - 1$ prosti brojevi, gdje je $f = 2^l + 1$ i $n > l \geq 1$.

Dokaz. Prema definiciji prijateljskih brojeva n, p, q i r moraju zadovoljavati dvije jednačine:

$$(p + 1)(q + 1) = r + 1$$

$$(2^{n+1} - 1)(p + 1)(q + 1) = 2^n(pq + r).$$

Iz toga slijedi da je

$$r = pq + p + q$$

$$[p - (2^n - 1)] \cdot [q - (2^n - 1)] = 2^{2n}.$$

Zapišemo li desnu stranu druge jednačine u obliku $A \cdot B$, gdje je $A = 2^{n-l}$ i $B = 2^{n+l}$ za neki cijeli broj $l \in [1, n - 1]$, slijedi da je

$$p = 2^n - 1 + 2^{n-l}$$

$$q = 2^n - 1 + 2^{n+l}.$$

Ako su brojevi $p = 2^{n-l}(2^l - 1) - 1, q = 2^n(2^l+1) - 1$ i $r = pq + p + q = 2^{n-l}(2^l+1)^2 - 1$ prosti, tada je $(2^n p q, 2^n r)$ par prijateljskih brojeva.

Do Eulerovog otkrića bila su poznata samo tri para prijateljskih brojeva.
3.1.2 Borhovo pravilo

Eulerovo pravilo zahtijeva da su tri broja, p, q i r, istovremeno prosta. Njemački matematičar Walter Borho proučavao je pravila za konstrukciju prijateljskih brojeva koja zahtijevaju da su dva broja istovremeno prosta. Borhovo istraživanje bilo je motivirano pitanjem da li skup $\mu(b_1, b_2, p)$ prijateljskih parova oblika

$$ (m_1, m_2) = (b_1 p^n q_1, b_2 p^n q_2), $$

gdje su b_1 i b_2 pozitivni cijeli brojevi, a p je prost broj koji ne dijeli $b_1 b_2$, može biti beskonačan u smislu da postoji beskonačno mnogo prirodnih brojeva n i prostih brojeva $q_1 = q_1(n)$, $q_2 = q_2(n)$ za koje je (m_1, m_2) prijateljski par. Otkrio je nužan uvjet koji mora vrijediti da bi skup $\mu(b_1, b_2, p)$ bio beskonačan:

$$ \frac{p}{p-1} = \frac{b_1}{\sigma(b_1)} + \frac{b_2}{\sigma(b_2)}. $$

To ga je dovelo do sljedećeg pravila:

Borhovo pravilo. Neka su dani prirodni brojevi p, b_1 i b_2, gdje je p prost broj koji ne dijeli $b_1 b_2$, te zadovoljava jednadžbu $\frac{p}{p-1} = \frac{b_1}{\sigma(b_1)} + \frac{b_2}{\sigma(b_2)}$. Ako je za neki $n \in \mathbb{N}$ i $i = 1, 2$

$$ q_i = \frac{p^n(p-1)(b_1 + b_2)}{\sigma(b_i)} - 1 $$

prost broj koji ne dijeli $b_i p$, tada je $(b_1 p^n q_1, b_2 p^n q_2)$ prijateljski par.

U Borhovom pravilu je vrlo bitno da su q_1 i q_2 u jednadžbi $q_i = \frac{p^n(p-1)(b_1 + b_2)}{\sigma(b_i)} - 1$ cijeli brojevi. Borho kaže da je ovo pravilo zapravo primjer Thabitovog pravila za $n = 1, 2, \ldots$ dodajući da je n i potencija prostog broja p, tj. p^n. Pogledajmo na primjeru što to znači.

Primjer 4. Neka $b_1 = 2^2 \cdot 5 \cdot 11$, $b_2 = 2^2$ i $p = 127$ zadovoljavaju jednadžbu $\frac{p}{p-1} = \frac{b_1}{\sigma(b_1)} + \frac{b_2}{\sigma(b_2)}$; a q_1 i q_2 su cijeli brojevi. Prema Thabitovom pravilu uređeni par $(b_1 p^n q_1, b_2 p^n q_2)$ je par prijateljskih brojeva za svaki $n \in \mathbb{N}$ za koji su q_1 i q_2 prosti.

Uvrstimo li b_1 i p u izraz $b_1 p^n q_1$ dobivamo:

$$ b_1 p^n q_1 = 2^2 \cdot 127^n \cdot 5 \cdot 11 \cdot q_1. $$

Uvrstimo li b_2 i p u izraz $b_2 p^n q_2$ dobivamo:

$$ b_2 p^n q_2 = 2^2 \cdot 127^n \cdot q_2. $$
Uređeni par \((2^2 \cdot 127^n \cdot 5 \cdot 11 \cdot q_1, 2^2 \cdot 127^n \cdot q_2)\), prema Thabitovom pravilu, je par prijateljskih brojeva za svaki \(n \in \mathbb{N}\) za koji su \(q_1 = 56 \cdot 127^n - 1\) i \(q_2 = 56 \cdot 72 \cdot 127^n - 1\) prosti brojevi. Uzmemo li da je \(n = 2\) slijedi da su \(q_1 = 903,223\) i \(q_2 = 65,032,127\) prosti brojevi, te se dobije par prijateljskih brojeva:

\[
(2^2 \cdot 127^2 \cdot 5 \cdot 11 \cdot 903,223, 2^2 \cdot 127^2 \cdot 65,032,127).
\]

Primijetimo da je prvi član prijateljskog para dobivenog u primjeru 4. djeljiv sa 220, odnosno manjim članom Pitagorinog prijateljskog para (220, 284). To nije slučajnost. Naime, Borho je otkrio da ako uzmemo prijateljski par oblika \((au, as)\), gdje su \(a\) i \(us\) relativno prosti, a \(s\) prost broj, tada u Borhovom pravilu možemo odabrati da je \(b_1 = au\), a \(b_2 = a\). Slijedi da je

\[
\frac{b_1}{\sigma(b_1)} + \frac{b_2}{\sigma(b_2)} = \frac{u + s + 1}{u + s}.
\]

Nadalje, ako je \(u + s + 1 \equiv p\) prost broj, tada \(b_1\), \(b_2\) i \(p\) zadovljavaju jednadžbu

\[
\frac{p}{p-1} = \frac{b_1}{\sigma(b_1)} + \frac{b_2}{\sigma(b_2)}.
\]

Pokazalo se da su \(q_1\) i \(q_2\) cijeli brojevi, pa dobivamo poseban slučaj Borhovog pravila.

Borhovo pravilo (poseban slučaj). *Neka je \((au, as)\) prijateljski par, gdje su \(a\) i \(us\) relativno prosti, tj. \((a, us) = 1\), a \(s\) prost broj. Neka je \(p = u + s + 1\) prost broj koji ne dijeli \(a\). Ako su za neki \(n \in \mathbb{N}\) \(q_1 = p^n(u + 1) - 1\) i \(q_2 = p^n(u + 1)(s + 1) - 1\) prosti brojevi koji ne dijele \(a\), tada je \((au^nq_1, ap^nsq_2)\) prijateljski par.*

Primijenimo poseban slučaj Borhovog pravila na sljedeći primjer.

Primjer 5. *Neka je \((3^4 \cdot 5 \cdot 11 \cdot 29 \cdot 89, 3^4 \cdot 5 \cdot 11 \cdot 2699)\) prijateljski par. Koristeći poseban slučaj Borhovog pravila pokažimo da je \((au^p q_1, ap^n q_2)\) par prijateljskih brojeva.*

Iz \((au, as) = (3^4 \cdot 5 \cdot 11 \cdot 29 \cdot 89, 3^4 \cdot 5 \cdot 11 \cdot 2699)\) slijedi da je \(a = 3^4 \cdot 5 \cdot 11\), \(u = 29 \cdot 89\) i \(s = 2699\). Budući da je \(p = u + s + 1 \rightarrow p = 5281\), \(p\) je prost broj koji ne dijeli \(a\), pa dobivamo sljedeće Thabitovo pravilo:

\((3^4 \cdot 5 \cdot 11 \cdot 5281^n \cdot 29 \cdot 89 \cdot q_1, 3^4 \cdot 5 \cdot 11 \cdot 5281^n \cdot q_2)\) je par prijateljskih brojeva za svaki \(n \in \mathbb{N}\) za koji su \(q_1 = 2582 \cdot 5281^n - 1\) i \(q_2 = 2582 \cdot 2700 \cdot 5281^n - 1\) prosti brojevi.
Uzmemo li da je \(n = 1 \rightarrow q_1 \) i \(q_2 \) su doista prosti brojevi, pa dobivamo da je
\[
(3^4 \cdot 5 \cdot 11 \cdot 5281 \cdot 29 \cdot 89 \cdot 1363541, 3^4 \cdot 5 \cdot 11 \cdot 5281 \cdot 36815963399)
\]
prijateljski par.

Te Riele je otkrio da je sljedeća vrijednost broja \(n \) za koju vrijedi poseban slučaj Borhovog pravila jednaka \(n = 19 \). Borho je pokazao da ne postoje druge vrijednosti za \(n \leq 267 \) za koje ovo pravilo daje par prijateljskih brojeva.

Povećanjem vrijednosti broja \(n \), naglo se povećavaju i vrijednosti brojeva \(q_1 \) i \(q_2 \), pa je tada često barem jedan od njih složen broj. Stoga je na ovaj način pronađeno samo nekoliko prijateljskih parova.

Iz uvjeta Borhovog pravila, da su \(a \) i \(u \) relativno prosti, pri čemu je \(s \) prost broj, slijedi \((a, u) = 1\). Primijetimo da taj uvjet nije potreban. Zašto je to tako, pogledajmo na konkretnom primjeru.

Uzmemo li da je \((3^3 \cdot 5 \cdot 7 \cdot 13, 3 \cdot 5 \cdot 7 \cdot 139)\) prijateljski par oblika \((au, as)\), gdje je \(a = 3 \cdot 5 \cdot 7 \) i \(u = 3^2 \cdot 13\). \(s = 139\) je prost broj, ali \((a, us) = 3 \neq 1\). Štoviše, budući da je \(u + s + 1 = 117 + 139 + 1 = 257\) prost, imamo Thabitovo pravilo:
\[
(3^3 \cdot 5 \cdot 7 \cdot 13 \cdot 257^n \cdot q_1, 3 \cdot 5 \cdot 7 \cdot 257^n \cdot q_2)
\]
jedan brojeva za svaki \(n \in \mathbb{N} \) za koji su \(q_1 = 118 \cdot 257^n - 1 \) i \(q_2 = 118 \cdot 140 \cdot 257^n - 1 \) prosti brojevi.

Zaključujemo da se u posebnom slučaju Borhovog pravila uvjet \((a, us) = 1\), gdje je \(s \) prost, može svesti na: \(s \) je prost broj koji ne dijeli \(a \).

3.1.3 Wiethausovo pravilo

Holger Wiethaus razmatrao je Borhovo pravilo za \(b_1 = aS \) i \(b_2 = aq \), gdje su \(a, S, q \in \mathbb{N} \). Ovdje je \(S \) kvadratno slobodan, \(q \) je prost broj i \((a, S) = (a, q) = (S, q) = 1\).

Jednakosti \(\frac{p}{p-1} = \frac{b_1}{\sigma(b_1)} + \frac{b_2}{\sigma(b_2)} \) i \(q_i = \frac{p^{(p-1)(b_1+b_2)}}{\sigma(b_i)} - 1 \), gdje je \(q_i \) cijeli broj, doveli su ga do sljedećeg pravila:

Wiethausovo pravilo. Neka su \(a, S \in \mathbb{N} \), gdje je \(S \) kvadratno slobodan, \(a \) i \(S \) su relativno prosti, te vrijedi
\[
\frac{a}{\sigma(a)} = \frac{\sigma(S)}{S + \sigma(S) - 1}.
\]
Označimo izraz \(\sigma(S)(S + \sigma(S) - 1) \) s \(D_1D_2 \), za \(D_1, D_2 \in \mathbb{N} \). Ako su \(p := D_1 + S + \sigma(S) \) i \(q := D_2 + \sigma(S) - 1 \) različiti prosti brojevi takvi da su \((p, aS) = (q, a) = 1 \), tada vrijedi sljedeće Thabitovo pravilo:

Ako su za neki \(n \in \mathbb{N} \) brojevi \(q_1 := (p + q)p^n - 1 \) i \(q_2 := (p - S)p^n - 1 \) prosti brojevi, te vrijedi da je \((q_1, aS) = (q_2, aq) = 1 \), onda je \((aSp^nq_1, aqp^nq_2) \) par prijateljskih brojeva.

Pomoću ovog pravila Wiethaus je otkrio 10 000 novih prijateljskih parova uključujući i prvi par prijateljskih brojeva sa više od 1 000 znamenki koji je otkrio 1988. godine. Garcia je deset godina kasnije koristeći Wiethausovo pravilo otkrio prijateljski par sa 5 577 znamenki.

3.2 Prijateljski brojevi posebnog oblika

Većina današnjih poznatih parova prijateljskih brojeva pronadena je metodama koje imaju korijene u Eulerovim istraživanjima i otkrićima. Možemo reći da je Euler bio prvi matemičar koji je sustavno proučavao prijateljske brojeve. On je tragao za prijateljskim brojevima oblika \((aM, aN) \), gdje je \(a \) zajednički faktor, \(aM \) i \(aN \) su nepoznati brojevi takvi da su \(a \) i \(M \cdot N \) relativno prosti. Uzmeno li da je \(a = 2^n \) za \(n \in \mathbb{N} \), \(M = pq \) i \(N = r \), gdje su \(p, q, r \) različiti neparni prosti brojevi, dobivamo ranije spomenuto Thabitovo i Eulerovo pravilo.

Zamijenimo li u definiciji 4. \((m, n) \) s \((aM, aN) \) dobivamo sljedeće jednažbe:

\[
\sigma(a)\sigma(M) = \sigma(a)\sigma(N) = a(M + N),
\]

iz kojih slijedi

\[
\sigma(M) = \sigma(N).
\]

Euler je razmatrao različite kombinacije parametara \(M \) i \(N \). Odabirom da je \(a = 3^2 \cdot 7 \cdot 13, M = pq, a N = r \) otkrio je prve prijateljske brojeve koji su neparni:

\[
3^2 \cdot 7 \cdot 13 \cdot 5 \cdot 17 = 69615 \quad \text{and} \quad 3^2 \cdot 7 \cdot 13 \cdot 107 = 87633.
\]
Također je proučavao i drugačiji pristup. Pretpostavio je da su \(M \) i \(N \) unaprijed dani brojevi koji zadovoljavaju \(\sigma(M) = \sigma(N) \), dok je \(a \), takav da je \(\frac{\sigma(a)}{a} = \frac{M + N}{\sigma(M)} \), potrebno pronaći. Ako je \((a, M) = (a, N) = 1\), onda je \((aM, aN)\) prijateljski par zato što

\[
\sigma(aM) = \sigma(a)\sigma(M) = a(M + N) = aM + aN
\]

i

\[
\sigma(aN) = \sigma(a)\sigma(N) = \sigma(a)\sigma(M) = \sigma(aM).
\]

Matematičar E. J. Lee smatrao je da su prijateljski brojevi oblika \((m, n) = (Apq, Br)\), gdje su \(p, q \) i \(r \) prosti brojevi i \((A, pq) = (B, r) = 1\). Tada se prema definiciji prijateljskih brojeva dobiva jednadžba oblika

\[
(c_1p - c_2)(c_1q - c_2) = c_3
\]

gdje su \(p \) i \(q \) nepoznanice, a \(c_1, c_2, c_3 \) i \(r \) su oblika

\[
c_1 = A\sigma(B) - c_2,
\]

\[
c_2 = \sigma(A)(\sigma(B) - B),
\]

\[
c_3 = \sigma(B)(Bc_1 + Ac_2),
\]

\[
r = \frac{\sigma(A)(p + 1)(q + 1)}{\sigma(B)} - 1.
\]

Zapišemo li desnu stranu jednažbe \((c_1p - c_2)(c_1q - c_2) = c_3\) kao produkt dvaju prirodnih brojeva, na sve moguće načine, i izjednačimo s lijevom stranom, pronaći ćemo sva moguća rješenja. Vrlo povoljna situacija nastaje kada je \(c_1 \) neki mali pozitivan broj, npr. \(c_1 = 1 \). Pomoću ove metode pronađeni su mnogi prijateljski brojevi.

Herman te Riele primijetio je da ako nam je poznat prijateljski par oblika \((b_1r_1, b_2r_2)\), gdje su \(r_1, r_2 \) prosti brojevi, a \((b_1, r_1) = (b_2, r_2) = 1\), tada odabirom \(A = b_1, B = b_2 \) i dijeljenjem zajedničkih faktora od \(c_1, c_2 \) i \(c_3 \) iz \((c_1p - c_2)(c_1q - c_2) = c_3\), koeficijent \(p \) može postati 1 ili neki mali cijeli broj veći od 1.

U sljedećem primjeru, pokazat ćemo kako iz poznatog prijateljskog para pomoću jednažbe \((c_1p - c_2)(c_1q - c_2) = c_3\) doći do novog para prijateljskih brojeva.
Primjer 6. Neka je par prijateljskih brojeva \((2^3 \cdot 17 \cdot 19 \cdot 281, 2^3 \cdot 53 \cdot 1879)\). Pomoću danog para, izračunajmo novi prijateljski par.

Uzmimo da je \(A = 2^3 \cdot 53\), a \(B = 2^3 \cdot 17 \cdot 19\). Tada su \(c_1 = 2^6 \cdot 3^3 \cdot 5\), \(c_2 = 2^9 \cdot 3^4 \cdot 5 \cdot 11\) i \(c_3 = 2^{12} \cdot 3^6 \cdot 5^4 \cdot 7 \cdot 409\). Uvrstimo li dobivene veličine u \((c_1 p - c_2)(c_1 q - c_2) = c_3\) dobivamo: \((2^6 \cdot 3^3 \cdot 5 \cdot p - 2^9 \cdot 3^4 \cdot 5 \cdot 11)(2^6 \cdot 3^3 \cdot 5 \cdot q - 2^9 \cdot 3^4 \cdot 5 \cdot 11) = 2^{12} \cdot 3^6 \cdot 5^4 \cdot 7 \cdot 409\). Kada sredimo dani izraz slijedi da je

\[
(p - 264)(q - 264) = 5^2 \cdot 7 \cdot 409.
\]

Zapišemo li desnu stranu u obliku 175 \cdot 409, dobivamo da je \(p = 439\), a \(q = 673\). Uvrstimo li dobivene \(p\) i \(q\) u \(r = \frac{\sigma(A)(p+1)(q+1)}{\sigma(B)} - 1\) slijedi da je \(r = 44483\). Dobiveni prosti brojevi \(p\), \(q\) i \(r\) daju novi prijateljski par

\[
(2^3 \cdot 17 \cdot 19 \cdot 44483, 2^3 \cdot 53 \cdot 439 \cdot 673).
\]

3.2.1 te Rieleovo pravilo

Za ranije navedena Thabitova pravila možemo reći da su beskonačan skup tvrdnji nad prijateljskim parovima koji ovise o parametru \(n \in \mathbb{N}\). Te Rieleovo pravilo razlikuje se od Thabitovih jer ne ovisi o takvom parametru, a ono glasi:

te Rieleovo pravilo. Neka je \((au, ap)\) prijateljski par gdje je \(p\) prost broj koji ne dijeli \(a\). Ako postoji par različitih prostih brojeva \(r\) i \(s\) takvih da je \((a, rs) = 1\), koji zadovoljavaju jednakost

\[
(r - p)(s - p) = (p + 1)(p + u),
\]

te ako postoji treći prost broj \(q = r + s + u\) takav da je \((au, q) = 1\) onda je \((auq, ars)\) prijateljski par.

Primijenimo pravilo na konkretan primjer.
Neka je \((3^2 \cdot 5^3 \cdot 13 \cdot 11 \cdot 59, 3^2 \cdot 5 \cdot 13 \cdot 18719)\) prijateljski par. Imamo da je \(a = 3^2 \cdot 5 \cdot 13 = 14625\), \(u = 5^2 \cdot 11 \cdot 59 = 16225\) i \(p = 18719\). Primijenimo li dobivene veličine na te Rieleovo pravilo dobivamo sljedeći izraz:

\[
(p + 1)(p + u) = 2^{12} \cdot 3^3 \cdot 5 \cdot 7 \cdot 13^2.
\]
Zapišemo li desnu stranu jednadžbe kao $2688 \cdot 243,360$ dobivamo tri prosta broja

$$r = 18\,719 + 2688 = 21\,407,$$

$$s = 18\,719 + 243,360 = 262,079$$

i $q = 21\,407 + 26\,2079 + 16\,225 = 299\,711$. Slijedi da je $(auq, ars) = (14\,625 \cdot 16\,225 \cdot 299\,711, 14\,625 \cdot 21\,407 \cdot 262,079)$ prijateljski par.

U slučaju da su a i u relativno prosti, desna strana jednadžbe $(r - p)(s - p) = (p + 1)(p + u)$ može se zapisati u obliku

$$ (p + 1)(p + u) = (\sigma(u))^2 \frac{\sigma(a)}{a} $$

i možemo očekivati da što u ima više prostih faktora, imat će ih i ovaj izraz.

Borho i Hoffmann shvatili su da uvjet u te Rielovom pravilu da je (au, ap) prijateljski par može bit oslabljen. Zamjenom pretpostavke u te Rielovom pravilu da je (au, ap) prijateljski par sa pretpostavkom da je (au, a) mentor, dobivamo općenitije pravilo, odnosno Borhovo pravilo s mentorom. Prije iskazivanja tog pravila, najprije ćemo definirati kada je uređeni par (a_1, a_2) mentor.

Definicija 6. Par pozitivnih cijelih brojeva (a_1, a_2) zove se mentor ako jednadžbe

$$a_1 + a_2x = \sigma(a_1) = \sigma(a_2)(x + 1)$$

imaju pozitivno cjelobrojno rješenje x.

Borhovo pravilo s mentorima. Neka je (au, a) mentor sa cjelobrojnim rješenjem x. Ako postoji par različitih prostih brojeva r i s, takvih da je $(a, rs) = 1$, koji zadovoljavaju jednadžbu

$$ (r - x)(s - x) = (x + 1)(x + u), $$

te ako postoji treći prosti broj $q = r + s + u$ takav da je $(au, q) = 1$ onda je (auq, ars) prijateljski par.

Iz definicije 6. jasno je da se svaka metoda pomoću koje možemo pronaći prijateljske parove oblika $(i, 1)$, $i \geq 1$, može koristiti za pronalazak mentora. Zašto to vrijedi? Ako je x jednačbi $a_1 + a_2x = \sigma(a_1) = \sigma(a_2)(x + 1)$ prirodan broj koji ne dijeli a_1, onda je par brojeva (a_1, a_2x) prijateljski par.

Na temelju Borhovog pravila s mentorima Garcia uspjeva pronaći više od milijun novih prijateljskih parova. Većina prijateljskih parova koji su bili poznati do 2004. godine pronađena je pomoću te Rielovog i Borhovog pravila s mentorima.
3.3 Poznati prijateljski brojevi

Do 18. stoljeća bila su otkrivena samo tri para prijateljskih brojeva. Otkriće prvog para, ujedno i najmanjeg, pripisuje se Pitagori, dok su drugi i treći par otkriveni zahvaljujući Fermatu i Descartesu. U 18. stoljeću Leonhard Euler sastavio je popis 64 prijateljska para. Kasnije je otkriveno da dva od 64 para nisu parovi prijateljskih brojeva. Francuski matematičar Adrien-Marie Legendre je 1830. godine pronašao još jedan prijateljski par, \((8520, 191, 2172, 649, 216)\).

Poseban doprinos u otkriću prijateljskih brojeva dao je 16-godišnji talijanski učenik Niccolò Paganini. On je 1866. godine zapanjio matematičare diljem svijeta jer je rekao da su 1184 i 1210 prijateljski brojevi. To je bio drugi najmanji par prijateljskih brojeva, kojeg je Euler u svom istraživanju očito previdio. Nažalost, Paganini nije dao nikakvu naznaku o tome kako je pronašao te brojeve, pretpostavlja se da ih je otkrio metodom pokušaja i pogrešaka.

Prvih deset prijateljskih parova poredanih po veličini su:

\[(220, 284), (1184, 1210), (2620, 2924), (5020, 5564), (6232, 6368),
\]

\[(10744, 10856), (12285, 14595), (17296, 18416), (63020, 76084)\]

i \((66928, 66992)\).

Bez obzira na niz provedenih istraživanja, i dalje nije poznato postoji li beskonačan broj prijateljskih parova. Dio problema leži u tome što za razliku od jedinstvene formule za generiranje savršenih (parnih) brojeva, ne postoji poznato pravilo za pronalaženje svih parova prijateljskih brojeva.
Literatura

Sažetak

Ključne riječi: Mersenneovi brojevi, (parni) savršeni brojevi, prijateljski brojevi
Summary

In the 16th century, very few people were interested in math and science in general. Only in the 17th century there was a real flourishing of scientific associations of universities independent. The first cases of regular gathering of mathematicians were recorded thanks to Marin Mersenne. In this paper, we will briefly introduce you to the work of Marin Mersenne, his contribution to the theory of numbers, and Mersenne’s numbers. Then we’ll introduce you to numbers of special shapes and features, perfect and amicable numbers. Since the Pythagoreans have attributed certain social qualities to numbers, the numbers that are worthy of being equal to the sum of their true divisors are called perfect numbers. An outstanding contribution to the discovery of perfect numbers of special forms was given by Euclid, Pierre de Fermat and Leonhard Euler. Until now, 51 perfect numbers have been discovered and all are even. Scientists believe that odd perfect numbers do not exist, but nobody has proven it. The other type of numbers studied by the ancient Greeks are amicable numbers. The first rule to find amicable numbers of special form was given by Thabit ibn Qurra. On the basis of his rule, many other rules have been created, among which are the most famous Euler’s rule, Borho’s Rule, Wieathaus’s Rule and te Riele’s Rule. Although more than $1223\,393\,596$ amicable pairs are known today, scientists have not yet proven that there are infinitely many amicable numbers.

Keywords: Mersenne numbers, (even) perfect numbers, amicable numbers
Životopis