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Introduction

Geometry, as we know it today, has its roots in ancient treatise Elements, in
which Euclid built the entire geometry of that time on the solid foundation of the five
postulates. While the first four postulates were intuitive and brief, the same could
not be applied to the fifth one, also known as the Parallel postulate, which due to
its complexity soon became the target of criticism. During the period of 2000 years,
quite a few mathematicians considered that the place of the controversial postulate
was not among the postulates at all, but that it belonged to the propositions instead.
Consequently, they tried to prove it from other postulates, and even though their
attempts were doomed to failure, the efforts were not in vain, since they ultimately
led to the discovery of the non-Euclidean geometries. By replacing the Parallel pos-
tulate with its negation, we may derive two geometries substantially different from
the Fuclidean geometry: hyperbolic and elliptic geometry. We restrict our attention
only to the former one, given that the elliptic geometry requires additional changes
in the first four postulates. The thesis aims to provide a better understanding of
the hyperbolic geometry and to demonstrate that it is equally consistent as the Eu-
clidean geometry. For this purpose, some of the most common models of hyperbolic
geometry are introduced and analysed, namely the pseudosphere, Beltrami-Klein
disk, Poincaré disk, Poincaré half-plane and hemisphere. Throughout our study,
we take a synthetic approach rather than analytic, meaning that the hyperbolic
geometry is gradually built in an elegant way starting with the primitive notions
and axioms, without the use of a coordinate system and calculus. The emphasis
is on the geometric representation of the content, and most of the proofs and new
concepts are supported by diagrams created in GeoGebra software.

In Chapter 1 the question of the Parallel postulate is placed in a historical
context, and we deal with events that influenced the occurrence of the hyperbolic
geometry. We start with Euclidean axiomatic system, and after addressing the issues
surrounding the fifth postulate, several propositions regarding Euclidean parallels,
relevant for the further development, are selected from Elements and proved. Over
the years, there appeared many alternative versions of the fifth postulate. We list
a few of these substitutes, and for the most frequent one, the Playfair’s axiom, we
prove the equivalence with the Parallel postulate. Then we look more closely at
Saccheri’s contribution and construct Saccheri’s quadrilateral that will be beneficial
in the analysis of divergent parallels. The chapter ends with the background story
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of the three founders of hyperbolic geometry: Gauss, Bolyai and Lobachevsky.

In Chapter 2 our main concern are hyperbolic parallel lines. First, some of
the principal results of hyperbolic geometry are summarised without proofs. One
of those seemingly peculiar theorems asserts that not all parallels have a mutual
perpendicular. We classify the parallel lines according to this property on divergent
parallels which admit the common perpendicular and asymptotic parallels which do
not admit such perpendicular. Characteristics of both kinds are comprehensively
explored. Afterwards, we introduce the notion of the defect and establish the relation
between the sum of the angles of a triangle and its area.

Chapter 3 is devoted to models of hyperbolic geometry. With the help of the
models that are constructed within Euclidean geometry, we are able to visualise all
different results derived in the second chapter. On the example of the pseudosphere,
the first exhibited model, it is shown that hyperbolic space is negatively curved.
Therefore, it is not possible to fit the entire hyperbolic plane into the Euclidean
plane, and some properties have to be distorted. In order to preserve certain aspects,
others need to be violated. With this in mind, we consider the advantages and
disadvantages of Beltrami-Klein disk, Poincaré disk and Poincaré half-plane. The
last model, the hemisphere, served as a tool to establish the isomorphism between
Beltrami-Klein and Poincaré models.

The final chapter contains a brief discussion of whether the space around us can
be described using hyperbolic geometry. Even though this area is still insufficiently
explored, and the answer to the question is far from being resolved, hyperbolic
geometry did have a great impact in shaping the views of society about the physical
world. We examine its practical application and the role in Einstein’s theory of
general relativity. However, considering the full depth of this complex matter, the
subject is barely scratched.



1 Historical background

Geometry, being one of the oldest branches of mathematics, has a long history
of development. Due to its constant progress, the foundations of geometry have also
been challenged and reformulated, especially in the last couple of centuries. Perhaps
the most precise and rigorous collection of statements on which the whole geometry
is currently based is Hilbert’s axiomatic system. David Hilbert (1862-1943) notably
contributed to the establishment of the formal treatment of geometry. He actually
modified and filled in the gaps of one much older system, which will be of greater
interest for us and the backbone of our study.

1.1 The foundation of Euclidean geometry

Modern axiomatic geometry originated with Euclid, a Greek mathematician
who lived and worked in Alexandria, around 300 BC. What made Euclid so signif-
icant is his book FElements, in which he combined all knowledge of geometry and
number theory that had been developed up to his time. It certainly was not the first
attempt to gather all known mathematics in a single volume, but it was the most
successful and the only one from that period which has been preserved. The Ele-
ments consists of 13 books (i.e. chapters), and the importance lies in their deductive
structure. Euclid started by defining basic concepts, such as point, line and angle.
However, some of these terms are better left undefined, as in Hilbert’s axiomatic
system in which point, line, plane, incidence, congruence and betweenness are unde-
fined terms called primitive notions. Definitions in Elements were followed by five
postulates and five common notions, statements which are taken to be true without
proof. Whereas the postulates are assumptions about geometric figures, common
notions are more general assumptions, suitable to other sciences as well. Today we
do not distinguish between those terms, and they are simply called azzoms. Euclid
organised further mathematical content in a strict logical sequence so that each and
every result could have been proved from the axioms and the previously proven
results. That made the Elements the first mathematical coherent axiomatic system.

The standard translation of Euclid’s common notions and postulates, taken

from [7], is as follows:
Common notion 1. Things which equal the same thing also equal one another.

Common notion 2. If equals are added to equals, then the wholes are equal.



Common notion 3. If equals are subtracted from equals, then the remainders are

equal.
Common notion 4. Things which coincide with one another equal one another.
Common notion 5. The whole is greater than the part.
Let the following be postulated:
Postulate 1. To draw a straight line from any point to any point.
Postulate 2. To produce a finite straight line continuously in a straight line.
Postulate 3. To describe a circle with any centre and distance.
Postulate 4. That all right angles equal one another.

Postulate 5. That, if a straight line falling on two straight lines makes the interior
angles on the same side less than two right angles, the two straight lines, if produced

indefinitely, meet on that side on which are the angles less than the two right angles.

Common notions do not require further discussion. On the other hand, it might
be useful to briefly analyse the postulates.

Out of the first few proofs, it is clear that Euclid tacitly assumed in Postulate 1
that there is one and only one straight line through any two given points. Postulate
2 declares that any line segment can be extended arbitrarily in both directions,
beyond any specified length, as much as one desires. The infinity of a line is another
Euclid’s assumption which is not explicitly stated. However, we cannot blame him
for leaving out such an important feature, since ancient Greeks did not think of
infinite entities as we do now. In Postulate 3, a circle with any given centre and
radius is, again, unique and arbitrarily large. Although, at first sight, Postulate 4
seems too obvious, it gives us important information about the uniformity of the
plane. It indicates that the plane cannot be bent in such a way that right angle in
one part of the plane is not equal to the right angle located somewhere else. In a
sense, the right angle became a standard of measurement, and only because of this
postulate, we are able to compare other angles to the right one and say whether
they are obtuse or acute. Recall that the right angle is defined as an angle which is
congruent to its supplementary angle.

Initially, Postulate 5 might seem slightly tangled. The meaning is illustrated

in Figure 1.1. Line t represents what today would be called transversal, a line that



intersects at least two other lines in the same plane at distinct points. By intersecting
lines a and b, two pairs of “interior angles on the same side” are formed, angles a
and [, and angles v and d. In our case, a pair of angles that add up to less than two
right angles is pair o and . Postulate 5 implies that lines a and b will eventually,
when sufficiently produced, meet on the right side of transversal ¢.

t
pE
d/a
o

Figure 1.1: Postulate 5

It is important to emphasize that Postulate 5 does not say anything about the
event when the sum of interior angles on the same side of transversal equals exactly
two right angles. We may know empirically, from our prior experience, that lines a
and b would be, in that case, parallel. But we need to be very careful here. Any
mathematical statement that we make must be justified by what we already know to
exist in our axiomatic system. Besides the laws of logic, we cannot refer to anything
outside the axiomatic system or to something that has not been introduced yet.
In order to stand behind our statement that lines a and b are parallel, we would
have to be able to prove it by using axioms and statements that have already been
proved. For now, we only have definitions and postulates, and that is not nearly
enough to draw such a conclusion. In general, intuition and experience may be
helpful in a way that we know what to expect to be true; but unless we can provide
a legitimate proof for our hypothesis, we cannot claim that it is accurate. The best
thing that we can do here is to apply the principle of tabula rasa, in other words,
to start from scratch and rather forget everything we knew before. In fact, that is
a precondition to accepting non-Euclidean geometry in the first place, taking into
account all results that will oppose and challenge our common sense.

By and large, Postulate 5 only indicates when lines are not parallel. However, most
of the properties regarding parallel lines are indeed consequences of Postulate 5, as
we shall see later, and that is the reason behind calling it the Parallel postulate.



1.2 Under a cloud of suspicion

For an axiomatic system to be valid, a required condition is the consistency of
the system. The system is consistent if no contradiction can be derived from the ax-
ioms, i.e. it is not possible to prove both a statement and its negation. Completeness
and independence are two more properties of the axiomatic system. Even though
they are not obligatory, it is better if they are satisfied. The system is said to be
complete if any statement can be proved true or false, whereas independence means
that no axiom can be deduced from the other axioms. While nobody argued that
Euclid’s axiomatic system is consistent and complete, independence, on the other
hand, came into question.

The first four postulates are quite straightforward, brief and simple, as axioms
should be. The fifth postulate, on the contrary, is not equally self-evident. It
was never questioned if it is accurate, but whether it should be called an axiom.
Although it appears as quite intuitive, it is considered to be a far more complex
statement that lacks clarity. A significant number of mathematicians argued that
Postulate 5 does not belong to postulates but rather to propositions. For more
than 2000 years, they were trying to prove the controversial postulate using Euclid’s
definitions, remaining four postulates and propositions which do not depend on it.
They did not succeed, but their attempts led to the discovery of non-Euclidean
geometry. A list of mathematicians that have been actively engaged in looking for
a proof of the fifth postulate is too long to cover all of them involved. Instead,
we will later examine the achievements of only a few, whose contribution to the
development of non-Euclidean geometry was the greatest. For the curious reader,
[1] and [11] might be good sources of more complete historical overview.

It seems like Fuclid himself had certain doubts regarding Postulate 5. He did
his best to postpone using it as long as he could. The first proposition, the proof
of which could not escape the fifth postulate, was Proposition 29. Although several
propositions of the first twenty-eight ones could have been proved in fewer steps
with the help of the fifth postulate, Euclid, for a reason best known to himself,
took a longer path. Those first twenty-eight propositions along with Proposition 31,
which do not require the fifth postulate to be proved, belong to absolute geometry.
Absolute geometry, also referred to as neutral geometry, is based only on the first
four of Euclid’s postulates. Theorems of absolute geometry hold both in Euclidean
and hyperbolic geometry, a form of non-Euclidean geometry.



1.3 Theory of parallels

Euclid, without a doubt, did a marvellous job in systemising all results that
he had access to at that time, in a way that they naturally flow one from another.
Beauty that is hidden within Elements comes to the surface in the following brief
exposition of selected propositions. Proofs reflect elegance; they are simple and easy
to follow. Nevertheless, some of the proofs have minor gaps because Euclid often
relied on diagrams and unstated assumptions. For that reason Euclid is severely
criticised today, and more precise proofs of the propositions are given, mostly based
on Hilbert’s axioms. Despite that, due to a desire to preserve a historical perspective
on the development of geometry, rather than following Hilbert’s rigorous axiomatic
system, we will be consistent with Euclid’s approach. The main results regarding
parallels are stated, numbered and proved in the same manner as in the Elements.
Only those propositions that are related to further content and can provide a better
understanding of what is coming are selected. Since the numbering of definition and
propositions corresponds with that of the Book I of Elements, they can easily be
found in |7] and placed in its context.

Definition 23. Parallel straight lines are straight lines which, being in the same
plane and being produced indefinitely in both directions, do not meet one another in

either direction.

The definition itself, however, does not guarantee that parallel lines exist. As
we shall see, the cornerstone in proving the existence will be Proposition 16. Outline
of Euclid’s proof of the following proposition will prove to be quite useful in the later

analysis, and we will refer to it in Section 1.5.

A F

B C D

Figure 1.2: Proof of Proposition 16.



Proposition 16. In any triangle, if one of the sides is produced, then the exterior

angle s greater than either of the opposite interior angles.

Proof. Let ABC be a triangle, and let side BC be extended to D (see Figure 1.2).
We want to show that ZACD > ZCAB and ZACD > ZABC.

Let the point E bisect AC. Join BE, and produce it to F so that EF = BE. Join
FC.

Now we have

AE =EC
BE =EF
/BEA = /FEC.

By SAS (side-angle-side) congruence criterion, AABE = ACFE. Hence ZCAB =
LACF.
According to Common notion 5, the whole is greater than the part,

ZACD > ZACF,
and consequently,
LACD > /CAB.

A similar argument shows that ZACD > ZABC, which proves the proposition.
QED

Figure 1.3: Angles formed by parallel lines cut by a transversal



Now we can use this result in proving the following proposition, in which parallel
lines occur for the first time. Before we do that, it might be useful to explain
Euclid’s terminology regarding angles formed by a transversal. In Figure 1.3 pairs of
“alternate angles” are v and o/, § and ['; pairs of “exterior angle” with corresponding
“interior and opposite angle on the same side” are § and (', a and o/, v and v/, §
and ¢'; and finally “interior angles on the same side™ ¢ and o/, v and §'.

Proposition 27. If a straight line falling on two straight lines makes the alternate

angles equal to one another, then the straight lines are parallel to one another.

Proof. Let t be a line that intersects two lines a and b at points A and B respectively,
so that corresponding alternate angles av and ( are equal (see Figure 1.4).

Suppose that a and b meet in point C', on the right side of transversal t. Then the
exterior angle at vertex A of AABC would be equal to the opposite interior angle
at vertex B, which contradicts Proposition 16.

Analogously, one can show that a and b can not intersect on the left side of transver-
sal t, either.

Therefore, it is impossible for a and b to meet, and they are, by definition, paral-
lel. QED

Figure 1.4: Proof of Proposition 27.

One might say that situation in Figure 1.4 is impossible because it is not in the
nature of straight lines to bend like that. Still, it is necessary to have in mind that
point C' could have been thousands of kilometres away from transversal ¢. Then on
our limited area of the plane that we are able to see, lines a and b would appear to
be parallel, but they would still have an intersecting point far in the distance. This



is an example that justifies why illustrations are not acceptable means of proving
mathematical statements.

Proposition 28 is similar to the previous one, and it states that lines a and b
in Figure 1.3 are parallel if exterior angle is equal to the interior and opposite angle
on the same side (a« = o/, B = ', v =7/, § = ') or if the sum of the interior angles
on the same side equals two right angles (6 + o/ = v+ ' = two right angles).

At this moment, we know that parallel lines do exist, and we have everything
we need to construct them. That is precisely what succeeding proposition is about.

Proposition 31. It is possible to draw a straight line through a given point parallel

to a giwen straight line.

Proof. Let AB be a given line, and point P a given point not on AB.

Choose arbitrary point S on line AB, and draw line P.S. Construct line C'D through
point P so that ZCPS is equal to ZPSB (see Figure 1.5).

By Proposition 27, lines AB and C'D are parallel. QED

A S B

Figure 1.5: Proof of Proposition 31.

The order of propositions given by Euclid is not followed here; Proposition 31
is placed before Propositions 29 and 30, and there is a reasonable explanation for
doing so. Recall that all previous propositions hold in absolute geometry. On the
other hand, to prove Propositions 29, 30 and those after Proposition 31, invoking
the fifth postulate is unavoidable. As they depend on the Parallel postulate, they
are not valid outside Euclidean geometry.

Proposition 29 is a converse of Propositions 27 and 28. 1t asserts that if the
lines are parallel and a transversal falls on them, then relations between angles will

be the same as in premises of two indicated propositions.



Proposition 30. Straight lines parallel to the same straight line are also parallel to

one another.

Proof. Let a, b, ¢ be three distinct lines so that both a and b are parallel to c.
Suppose, contrary to our claim, that a is not parallel to b. In that case they have to
meet; denote the point of intersection by P. Choose random point S on ¢ and join
it with P. Since a and b are not the same line, in Figure 1.6

o #B. (1)

By Proposition 29, from a || ¢ follows aw = 7. But also 8 = 7 because of b || ¢. From
this, we deduce that o = 3, which contradicts (1). Therefore, a || b and the proof is
complete. QED

Figure 1.6: Proof of Proposition 30.

Euclid gave a proof that slightly differs from the one above. The reason behind
taking a different road is that from this approach it might be easier to recognise
the true meaning of the proposition. The direct consequence of Proposition 30 is
the uniqueness of parallels. Although that is not explicitly stated, the proposition
ensures that there is one and only one parallel to a given line through a given point.

Like we have already said, Proposition 30 does not belong to the absolute
geometry, and therefore in absolute geometry we know that parallel lines exist, and
we know how to construct them, but what we don’t know is whether or not they are
unique. This will be the fundamental question around which the whole discussion
will be revolved.
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1.4 Playfair’s axiom

As mentioned earlier, the fifth postulate was not satisfying enough for the
majority of mathematical society. In fact, quite a few mathematicians gave their
own variations of the Parallel postulate. The most common alternative is known as
Playfair’s axiom, named after Scottish geometer John Playfair (1748-1819). Even
though it was not his original finding, Playfair took credit for it, owing to the fact
that axiom was widely adopted after it was included among five postulates in his
1795 edition of the Elements.

Playfair’s axiom. Given a line and a point not on the line, there exists exactly one

line through the point parallel to the given line.

It can be proved that Playfair's axiom is indeed equivalent to Postulate 5.
Two statements in some axiomatic system are said to be equivalent if each one
can be deduced from another, in the context of that axiomatic system. In other
words, we need to determine a base that is mutual to both statements, assume
one of the statements as an axiom, prove the other one as a theorem, and then
reverse statements and repeat the steps. In our case, the base consists of Euclid’s
definitions, common notions, the first four postulates and all propositions that do
not depend on the fifth postulate. Obviously, the base that we are looking for is
absolute geometry.

Theorem 1.1. Playfair’s axiom is equivalent to Postulate 5.
Proof. As discussed above, the proof is completed by showing that:

(I) Absolute geometry + Postulate 5 = Playfair’s axiom.

(IT) Absolute geometry + Playfair’s axiom = Postulate 5.
Implication (I) follows from Propositions 30 and 31 that were explained and proved
in the previous section. What is left is to prove that (/1) holds as well.

Let a and b be two lines such that, when they are cut by a transversal ¢ at
points S and P respectively,

a + [ < two right angles, (2)

where v and [ are interior angles on the right side of the transversal ¢, at points S
and P respectively (see Figure 1.7). We want to prove that the lines a and b will
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eventually meet on the right side of ¢.
Draw line ¢ through P so that

a + 7 = two right angles. (3)

Proposition 28 now implies a || ¢. From (2) and (3) it can be concluded that 5 < v,
hence b and c are not the same line.

According to Playfair’s axiom there can be only one line through P parallel with a,
and consequently b has to intersect a. Let R be the point of intersection. If a and
b met on the left side of ¢, then in the triangle PRS the sum of the interior angles
at P and S would exceed two right angles because of (2). That is impossible by
Proposition 17 which states that in any triangle the sum of any two angles is less
than two right angles. Therefore, lines a and b meet on the right side of transversal
t as required. QED

Figure 1.7: Proof of Theorem 1.1

So without changing the content of Euclidean geometry, Parallel postulate can
be replaced by Playfair’s axiom. That is exactly what happened in most of the books
related to geometry, since Playfair’s axiom is less technical, uses only the notion of
parallelism and requires no information about the size of the angles. Simplicity and
straightforwardness make Playfair’s axiom considerably more appealing than the
Parallel postulate. Another advantage that will prove highly useful is how easily it
can be reformulated in order to be valid in non-Euclidean geometries as well.

Playfair’s axiom is not the only statement logically equivalent to the fifth postu-
late in the presence of the axioms of absolute geometry. A surprisingly large number
of the familiar theorems could take the place of the fifth postulate, and some of them

are listed below.
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Theorem 1.2. The following statements are equivalent to the Parallel postulate:

(a) There exist similar triangles which are not congruent.
(b) The sum of the angles of a triangle equals two right angles.
(¢) Parallel lines are equidistant from one another.

(d) Any two parallel lines have a common perpendicular.

1.5 Saccheri

In the wide sea of unsuccessful endeavours to prove Postulate 5, one Italian
priest left a significant trace. Girolamo Saccheri (1667-1733) had more creative
ideas than the ones before him, and his strategy stood out among the rest. Saccheri’s
intention was to prove the Parallel postulate by reductio ad absurdum, assuming the
contrary of the postulate and hoping to derive a contradiction. The centre of his
work was quadrilateral’ which is later called after him.

Definition 1.1. A Saccheri quadrilateral is a quadrilateral in which a pair of equal
opposite sides (arms) is perpendicular to one of the other sides which is called the
base. The side opposite to the base is the summit, and the angles adjacent to the

summit are the summit angles (see Figure 1.8).

D Summit c
|/ \J
\

Summit angles

[ 1 []
A Base B

Figure 1.8: Saccheri quadrilateral

Theorem 1.3. The summit angles of Saccheri quadrilateral are equal.

'We shall deal with convex quadrilaterals only. Hence, the word “quadrilateral” would mean
convex quadrilateral.
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Proof. The proof is straightforward. Clearly, by SAS criterion ADAB = ACBA.
This gives AC = BD, and so AACD = ABDC by SSS. QED

Saccheri proposed three possible hypotheses regarding summit angles:

1. Hypothesis of the acute angle.
2. Hypothesis of the right angle.
3. Hypothesis of the obtuse angle.

Afterwards, he wanted to avoid possible chaos in which, e.g. one Saccheri quadri-
lateral has acute summit angles, while another one has obtuse. The uniformity is
established by our next theorem that is also called Three musketeers theorem. The
proof is omitted for the sake of brevity, but the original version can be found in [10,
Prop. V-VII|.

Theorem 1.4 (Uniformity theorem). If one of the hypotheses stated above is true

for a single Saccheri quadrilateral, it is true for every such quadrilateral.

There is a close relationship between Saccheri quadrilateral and a triangle. For
the proof of the following theorem see |6, p. 184].

Theorem 1.5. The hypothesis of the acute (respectively, right, obtuse) angle is true
if and only if the sum of the angles of a triangle is less than (respectively, equal to,

greater than) two right angles.

Saccheri was familiar with the equivalence of Postulate 5 with the statement
that the sum of the angle of every triangle equals two right angles. Therefore, if
he had managed to eliminate hypotheses of acute and obtuse angle, the Parallel
postulate would have been proved. With absolute geometry as the base, he easily
reached contradiction in the case of the obtuse angle.

Theorem 1.6 (Saccheri-Legendre Theorem). Assuming only absolute geometry, the

sum of the angles of a triangle cannot be greater than two right angles.

Proof. On the contrary, suppose that there exists AABC' in which the sum of the
angles exceeds two right angles by a certain positive amount . We first apply
Archimedean property which asserts that if a small positive quantity, in our case €, is
doubled often enough, it will eventually grow larger than any fixed amount. Let this
fixed value be a measure of the angle ZC'AB. Thus Archimedean property assures
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that there exists n € N such that 2"¢ > ZCAB. It follows that Q%AC'AB < . The
main idea of the proof is to find a triangle with the same angle sum as of the given
triangle AABC, but with one of the angles less than ¢, that is, less than or equal to
5:ZCAB. Then the sum of the other two angles in AABC would be greater than
two right angles, which is a contradiction to Proposition 17 that states that the sum
of any two angles in any triangle is less than two right angles, and the proof would
be complete.

Qg B

A B

Figure 1.9: Proof of Theorem 1.6

Let D be the midpoint of BC in the given AABC. Extend AD to E so that
AD = DE. AADC = AEDB by SAS, and consequently AABC and AABE have
equal sum of the angles: oy +as ++7v=0a] +ay+ S+ (see Figure 1.9).

Since oy + ag = LOAB, and a3 = o}, at least one of the angles as and o
does not exceed %ACAB . Without loss of generality, we can assume ay < %ACAB .
Then by finding the midpoint of BE in AABFE, and by repeating all of the steps
from earlier, we obtain a new triangle, with the same angle sum as of AABC' but
with one of the angles less than or equal to 21—240 AB. If we continue in this manner,

after n iterations, one of the angles of the newly obtained triangle would be less than

or equal to Q%ZC AB. Therefore, we have found a triangle with one of the angles
less than € but with the angle sum equal to that of AABC, which is the desired
conclusion. QED

One part of the proof was inspired by Euclid’s strategy and might seem familiar.
It is worth recognising that the step in which a line segment was extended by its
own length was applied earlier in proving Proposition 16. It is assumed here that
we can always obtain a new line segment twice as long as the original one. But

let us introduce the following model of geometry on the sphere (called the spherical
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geometry), illustrated in Figure 1.10, and see whether our assumption is valid.

Figure 1.10: Spherical geometry

Consider geometry on the surface of a sphere in which “lines” are interpreted as
great circles. A great circle is the intersection of the sphere and a plane that passes
through the centre of the sphere. Two great circles intersect in two diametrically
opposite points that are called antipodal points (e.g. the north and the south poles).
An immediate issue arises now, as the first postulate is no longer satisfied. According
to Postulate 1, there is one and only one line through any two points, and antipodal
points lie on indefinitely many lines. To resolve this, we define a “point” to be a pair
of two antipodal points. Identifying antipodal points can be imagined as pasting
them together so that they merge into a single point. In this way, we obtain a new
geometry called rather elliptic geometry.

Nevertheless, even with the modification stated above, troubles with the postu-
lates are not brought to an end because the second postulate also poses a problem.
Since a great circle does not have beginning nor end, a line in this model is un-
bounded. However, it has a finite length. A direct consequence is that not every
line segment can be doubled without exceeding that certain length. In terms of the
last proof, if segment AD was long enough, it would be possible that reflected point
FE lies on the initial segment AD.

If that one particular step of both of the proofs cannot be carried out in the
spherical geometry, one may suspect that Proposition 16 and Theorem 1.6 will not
hold either. To confirm this, it is convenient to analyse a special case of triangles

on the sphere. Let point P be the pole of a line AB. A point is called the pole of
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a line if every line through that point is perpendicular to the given line. Therefore,
lines PA and PB are both perpendicular to AB (see Figure 1.10). Now, it is fairly
easy to see that in the APAB exterior angle at vertex A is equal to the interior and
opposite angle at B. Likewise, when it comes to the sum of the angles of APAB,
even without ZBPA, angles ZPAB and ZABP add up to two right angles.

Our example demonstrated rather strikingly that there exists geometry in which
the sum of the angles of a triangle exceeds two right angles. However, Saccheri did
nothing wrong by eliminating that possibility in the context of absolute geometry,
since we have seen that not all postulates of absolute geometry hold on the sphere.
What he did next, on the other hand, was a tremendous mistake and cost him
the honour of being the one who discovered the non-Euclidean geometry. While he
struggled to rule out the hypothesis of the acute angle, he derived many results,
some of which will become initial theorems of hyperbolic geometry. Still, he re-
fused to accept the idea that there exists a geometrical system in which the acute
angle hypothesis is valid. Although he failed to reach any logical contradiction, he
concluded: “The hypothesis of the acute angle is absolutely false; because [it is|
repugnant to the nature of the straight line” [10, p. 155|. Nonetheless, there is no
doubt that his work was of great significance. He inspired those who came after him,
and eventually, it was verified that each of the three Saccheri’s hypotheses leads to
different geometry: hyperbolic, Fuclidean and elliptic, respectively.

1.6 The discovery of non-Euclidean geometry

The sum of the angles of a triangle was analysed by yet another mathemati-
cian, Carl Friedrich Gauss (1777-1855), who was undisputedly the most notable
mathematician of his time. Unlike Saccheri, he did not dismiss the possibility of the
triangles with the angle sum less than two right angles. From his correspondence
with other mathematicians, it is clear that he accepted the existence and validity of
a geometry other than Euclidean. In one of his private letters written in 1824, he
stated:

The assumption that the sum of the three angles is less than 180° leads to
a curious geometry, quite different from ours [the Euclidean|, but thoroughly
consistent, which I have developed to my entire satisfaction. ... The theorems
of this geometry appear to be paradoxical and, to the uninitiated, absurd; but
calm, steady reflection reveals that they contain nothing at all impossible. [6,
pp. 243, 244]
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Although Gauss had been working on non-Fuclidean geometry since the age of
15, he did not publish anything on the matter. It is believed that the reason behind
it was the fear that his good reputation could be ruined. He was already recognized
as one of the greatest mathematicians, and he was probably afraid that he might
lose public respect. Gauss knew that his findings were rather controversial and that
society, perhaps, was not ready yet for a revelation of that kind.

He must have been quite surprised when he received a copy of a mathematical
treatise from his old friend Farkas Bolyai. In the appendix of that book (the Ten-
tamen, 1832), Farkas’s son and Hungarian army officer, Janos Bolyai (1802-1860),
published his discoveries regarding new geometry, which were more or less the same
as those of Gauss. Following statement shows how enthusiastic Janos was about
his discovery: “Out of nothing I have created a strange new universe” [3, p. 102].
However, his euphoria did not last long. Soon, they received a response from Gauss.
In the introductory paragraph of the letter, Gauss wrote:

I dare not praise such a work, ... to praise it would amount to praising myself;
for the entire content of the work, the path which your son has taken, the
results to which he is led, coincide almost exactly with my own meditations
which have occupied my mind for from thirty to thirty-five years. [6, p. 241]

Jéanos was very disappointed by this response, and for a reason only known to
himself, he never published anything else regarding non-Euclidean geometry again,
even though he had notes with numerous results that were not included in the
appendix of his father’s book.

A few years earlier, in 1826, Nicolai Ivanovich Lobachevsky (1792-1856), a
Russian professor of mathematics at the University of Kasan, delivered a lecture on
a geometry in which it is possible to draw more than one parallel to the given line
through a point not on the line. In 1829 he published an article on the same subject,
but since it was in Russian, his work did not receive much attention. A decade
later, Lobachevsky wrote a book in German, and it was eventually found by Gauss.
Surely, Gauss was already familiar with the whole concept, but he was astonished
by Lobachevsky’s approach that was different than his. He was so impressed that he
took special care to make Lobachevsky one of the members of Gottingen Scientific
Society, which was the centre of German mathematics at that time.

Although both Lobachevsky and Bolyai had a connection with Gauss, and the
idea of non-Fuclidean geometry occurred to them almost simultaneously, all three
of them came to their conclusions independently. We have not mentioned precisely
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their individual accomplishments, as most of their surprising results will be explained
in the following chapter. Unfortunately, neither Bolyai nor Lobachevsky stumbled
on acceptance regarding their discoveries during the lifetime. Apparently, Gauss was
right when he assumed that the public was not ready for revolutionary new ideas.

Today, the form of the non-Euclidean geometry described by Gauss, Bolyai and
Lobachevsky is called the hyperbolic geometry, also referred to as Lobachevskian
geometry. The hyperbolic axiomatic system includes definitions, postulates and
theorems of absolute geometry with the addition of the following axiom, which
replaces Euclidean parallel postulate.

Hyperbolic Parallel Postulate. Given a line and a point not on the line, there

exists more than one line through the point parallel to the given line.

Since it is possible to have infinitely many parallels to a line through the point
not on the given line, a question about the third variation of Playfair’s axiom nat-
urally arises. Is there a geometry in which parallel lines do not exist? The answer
is affirmative. In fact, we already gave a model of this case. It is easily seen that in
Figure 1.10 any two great circles will inevitably intersect. Recall that in Section 1.3
the existence of parallels was derived from the first four postulates. More precisely,
the existence was proved by invoking Proposition 16, and we had a chance to see
that this proposition does not hold on the sphere. As stated before, a geometry that
satisfies following axiom is called elliptic geometry.

Elliptic Parallel Postulate. Given a line and a point not on the line, there exists

no line through the point parallel to the given line.

German mathematician Georg Friedrich Bernhard Riemann (1826-1866) was
a student of Gauss and the first one who recognized that geometry on the sphere
is a type of non-Euclidean geometry. That is why elliptic geometry is sometimes
called Riemannian geometry, although this term is usually used in a much broader
sense. His work was elaborated by another German mathematician, Felix Klein
(1849-1925). He divided elliptic geometry on a single and double elliptic geometry,
depending on whether two lines meet in a single point or in two points. However,
single elliptic geometry is more commonly called just elliptic geometry, while double
elliptic geometry is more often referred to as spherical geometry. The model intro-
duced earlier in which antipodal points are identified obviously belongs to single
elliptic geometry.
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We have already indicated in the previous section that elliptic geometry, unlike
hyperbolic and Euclidean, is not founded on the four postulates of absolute geome-
try. Another set of modified axioms is required for an axiomatic system of elliptic
geometry to be consistent. However, an extensive discussion on elliptic geometry is
beyond the scope of this paper, and for more details, we refer the reader to [5] and
6]

In the succeeding chapters, the subject of our attention will be hyperbolic ge-
ometry. While it was easy to accept the Elliptic parallel postulate due to the evident
example on the sphere, some doubts regarding Hyperbolic postulate might still ex-
ist. Hopefully, suspicion will be eliminated after we explain the behaviour of the
parallel lines in the hyperbolic plane and introduce a few models. Models will play
a major role here, as they will help us to visualise the properties and provide clarity

in understanding them.
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2 Fundamental results of hyperbolic geometry

As previously stated, the four postulates of absolute geometry with the addition
of the Hyperbolic parallel postulate create the basis for hyperbolic geometry. Note
that, except theorems of absolute geometry, we already have a few theorems unique
to hyperbolic geometry. The Hyperbolic parallel postulate is the negation of Play-
fair’s axiom, which is a substitute for the fifth postulate. Therefore, we can conclude
that the negation of any statement equivalent to the Euclidean parallel postulate
will belong to hyperbolic geometry. This gives us the following four theorems, which

are negations of the statements of Theorem 1.2.

Theorem 2.1. [If two triangles are similar, then they must be congruent.
Theorem 2.2. The sum of the angles of a triangle is less than two right angles.
Theorem 2.3. There exist parallel lines which are not equidistant from one another.
Theorem 2.4. There exist parallel lines which do not have common perpendicular.

These results might seem quite strange at first glance. Perhaps the most striking
one is Theorem 2.1 which gives a new congruence criterion (angle-angle-angle), and
it asserts that if corresponding angles of two triangles are equal, those two triangles
will necessarily be congruent. Angles determine not just the shape of a triangle, but
also its size. Similar triangles which are not congruent, do not exist in hyperbolic
geometry.

Rectangles and squares are other figures whose existence is denied. Bearing in
mind that each quadrilateral can be divided into two triangles, this is an immediate

consequence of Theorem 2.2.

Theorem 2.5. The sum of the angles of every quadrilateral is less than four right

angles.
Corollary 2.1. The summit angles of a Saccheri quadrilateral are acute.

Hyperbolic parallel postulate implies that there is more than one parallel line to
the given line through the point not on the line, but it does not indicate specifically
how many parallels there are. Moreover, Theorem 2.3 claims that the parallels are
not equidistant, so how do they behave then, relative to one another? To answer
these questions, we first need to classify parallels according to their characteristics.
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There are two kinds of parallel lines, those which admit a common perpendicular
and those which do not admit such a perpendicular. Properties of these two types
of parallels differ significantly, and we will consider them separately.

2.1 Parallels with a common perpendicular

Most of the results of this section were developed by Saccheri, even though he
was not aware of his achievements. Taking that into account, it should not come as

a surprise that the centre of our analysis will be Saccheri quadrilateral.

Theorem 2.6. The line joining the midpoints of the base and the summit of a

Saccheri quadrilateral is perpendicular to both.

Proof. Let S be the midpoint of the base of a Saccheri quadrilateral ABC'D, and
P the midpoint of the summit (see Figure 2.1). By Theorem 1.3 and SAS criterion,
AAPD = ABPC. This gives AP = BP, and by SSS, AAPS = ABPS. It follows
that ZASP = ZBSP, and since they are supplementary angles, they are clearly
right angles.

A similar consideration applies to supplementary angles ZDPS and ZCPS.
By Postulate 4 and SAS, AASD = ABSC. Now we have ADSP = ACSP by
SSS, which implies ZDPS = ZCPS, and the proof is complete. QED
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Figure 2.1: Proof of Theorem 2.6

As a consequence of Proposition 27, if two lines have a common perpendicular,
they are parallel. Recall that Proposition 27 is part of absolute geometry and thus
holds in hyperbolic geometry. Therefore, the base and the summit of a Saccheri

quadrilateral lie on parallel lines with a common perpendicular.
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It is worth noticing that if two parallels have a common perpendicular, then
they cannot have a second one. If they had, the quadrilateral formed by two parallel
lines and their two common perpendiculars would be a rectangle, and that would

contradict Theorem 2.5.

Corollary 2.2. If two lines admit a common perpendicular, then that common

perpendicular s unique.

Some of the straight lines in diagrams in this chapter might seem curved, but
that should not lead to a conclusion that straight lines really are curved in hyperbolic
geometry. They are intentionally represented in that way to emphasise certain
properties, for example, acute summit angles in Saccheri quadrilateral. The only
purpose of diagrams is to help us to better understand the discussed content, and
they should not be taken literally. Furthermore, if we consider the diagram in
Figure 2.1, it is wrong to assume that it is possible to draw another straight line
through points C' and D beside this “curved” one that we have. In order to visualise
some properties more accurately, we had to violate others. However, all results of
absolute geometry are still valid. Straight lines remain straight, and through any
two points still passes one and only one line.

Lemma 2.1. Let ABCD be any quadrilateral with right angles at A and B. Then
/BCD < LADC <= BC > AD, that is, out of the two remaining angles, the

greater angle is opposite the greater side.

Proof. Suppose BC > AD. Then there is a point £ on BC so that BE = AD
(Figure 2.2). By definition, ABED is a Saccheri quadrilateral and ZADFE = ZBED
by Theorem 1.3. Since ZADC is divided by line DE, /ADE < Z/ADC. /BED
being the exterior angle of triangle AECD is greater than ZBCD (Proposition 16).
Now we have /BCD < /BED = ZADE < ZADC.

Conversely, assume ZBCD < ZADC. If sides BC and AD were equal, then
ABCD would be Saccheri quadrilateral, and angles at C' and D would also be
equal, which contradicts the assumption. This leaves us with two possibilities, either
BC < AD or BC' > AD. If the first inequality was true, according to the first part
of the proof, ZBCD would be greater than ZADC', and that is again contradiction
with the premise. Thus BC > AD. QED
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A B

Figure 2.2: Proof of Lemma 2.1

Theorem 2.7. In a Saccheri quadrilateral the summit is greater than the base, and
the arms are greater than the segment joining the midpoints of the summit and the

base.

Proof. Let ABCD be a Saccheri quadrilateral with right angles at A and B, and
let S and P be the midpoints of the base and the summit, respectively (Figure 2.3).
Since ZADP is acute angle (Corollary 2.1) and ZDPS right angle (Theorem 2.6),
previous lemma implies AD > SP. The same conclusion can be drawn for other
arm BC and the second part of the theorem is proved.

Proof of the first part may be handled in much the same way. It is sufficient to
make a slight change of the view and recognise that segments AS and DP are arms
of the quadrilateral with the base P.S. Invoking previous lemma yields DP > AS. In
the same manner, we can see that PC' > SB. After combining these two inequalities,
we have DP + PC > AS + SB, or DC > AB, and the proof is complete. QED
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Figure 2.3: Proof of Theorem 2.7
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In Figure 2.3, perpendicular S P divides the Saccheri quadrilateral into two con-
gruent quadrilaterals ASPD and BSPC'. Such quadrilateral with three right angles
is called the Lambert quadrilateral. It is named after Swiss mathematician Johann
Heinrich Lambert (1728-1777), who tried to prove the fifth postulate by taking a
similar path to the one Saccheri took. The remaining angle of Lambert quadrilateral
is called the “fourth angle”, and it can be acute, right or obtuse. Lambert was hoping
to derive a contradiction in the case of acute and obtuse angle, which would force the
Parallel postulate. Same as Saccheri, he only succeeded to eliminate the possibility
of obtuse angle (which holds in elliptic geometry). In hyperbolic geometry, due to
the Theorem 2.5, we can also rule out the hypothesis of the right angle.

Theorem 2.8. The fourth angle in a Lambert quadrilateral is acute.

Just like we can halve Saccheri quadrilateral to obtain Lambert quadrilateral,
we can also carry out the reverse steps, and by reflecting Lambert quadrilateral over
the arm adjacent to two right angles, we can produce Saccheri quadrilateral. Taking
that observation into account together with Theorem 2.7, the following result is

immediate.

Corollary 2.3. In Lambert quadrilateral each side adjacent to the fourth angle is

greater than the opposite side.

From Theorem 2.7, it can be easily seen that parallel lines are not equidistant,
as it is stated in Theorem 2.3. Recall that the distance from an external point to a
line is defined as the length of the line segment that is perpendicular to the line and
passes through the point. Lengths of segments DA, PS and OB in Figure 2.3 are
three distances from the line DC to its parallel line AB. DA is equal to CB (arms
of Saccheri quadrilateral), but they are greater than PS (Theorem 2.7). If parallel
lines AB and DC' were extended, the diagram suggests that the distance between the
parallel lines would be the least when measured along the common perpendicular
of those lines, and that the distance would increase symmetrically with respect
to the common perpendicular. Therefore, the distance from one parallel line to
another cannot have the same value in more than two points. Although we strictly
emphasized earlier that conclusions should not be based on diagrams, in this case
our intuition is on the right track, and these assumptions will, in fact, prove to be
true.
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Theorem 2.9. The distance between two parallels with a common perpendicular is
least when measured along that perpendicular. The distance from a point on either
parallel to the other increases as the point recedes from the perpendicular in either

direction.

Proof. Let a and b be parallel lines with a common perpendicular intersecting a at
point S and b at P (Figure 2.4). Choose arbitrary point By on b (other than P), and
let A; denote the foot of the perpendicular from B, to the line a. Since SAB;P is
a Lambert quadrilateral, ZA; B, P is acute and by Lemma 2.1, A B, is greater than
SP, which proves the first part of the theorem.

Now choose another point B, on b such that By is between P and By. A, denotes the
foot of the perpendicular from Bs to the line a. S Ay By P is a Lambert quadrilateral,
and so LA;ByP is acute. /ByB;A; is obtuse because of ZA;B;P being acute.
Therefore, by Lemma 2.1, A;B, > A1 B;.

A similar observation applies for distances from points on the line a to the line
b. QED
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Figure 2.4: Proof of Theorem 2.9

The distance between parallel lines with a common perpendicular becomes in-
finitely large in either direction. Parallel lines diverge from each other on both
sides of the common perpendicular, and that is the reason behind the terminology
dwergently parallel lines, which will be used from now on.

What remains is to determine how many lines divergently parallel to the given
line is possible to draw through the point not on the line.

Theorem 2.10. Given a line and a point not on the line, there are infinitely many

lines through the point divergently parallel to the given line.
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Proof. Let a be the given line, P a point not on the line, and S the foot of the
perpendicular from point P to the line a (see Figure 2.5). Through point P draw a
line b perpendicular to the line SP. Then b is one divergently parallel line to the line
a through the point P. On the line b choose arbitrary point By, and let A; be the
foot of the perpendicular from B; to a. Previous theorem implies 4;B; > SP. On
A, B; there is a point P, such that AP, = SP. SA, P, P is a Saccheri quadrilateral,
and thus by Theorem 2.6, PP, is another divergently parallel line to a through
P, different than PB;. In the same manner, by choosing a different point By on
b, we can obtain a line PP, divergently parallel to the line a which differs from
PP;. To confirm that it is not the same line as PP, it is enough to notice that
SP = AP, = A,P,, and we concluded earlier that at most two points at the time
on a single line can be equidistant from its parallel line. Therefore, for each point
on the line b, there exists a corresponding divergently parallel line to the given line
a through P. QED

5

Figure 2.5: Proof of Theorem 2.10

2.2 Parallels without a common perpendicular

As we have seen, parallel lines in hyperbolic geometry are considerably different
from those in Euclidean geometry. So far we have discussed only parallel lines which
admit a common perpendicular. As we know, divergently parallel lines are not
equidistant, and if we have the same setup as in the Figure 2.5, the angle between
the line PS and a line divergently parallel to the line a through P, does not have to
be the right angle (in fact, it will not be the right angle unless PS is the common
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perpendicular between those parallel lines, which is possible for only one divergently
parallel line through P). It is reasonable to wonder whether there is a lower limit
for this angle, for which after it is crossed, a parallel line becomes an intersecting
line. How far can we rotate the parallel line through the point P towards PS in one
direction in order that it is still parallel with the given line? In other words, is there
a limiting line between divergently parallel and intersecting lines? The answer lies
in another type of parallel lines, those without a common perpendicular, which are,

for a good reason, also called limiting parallel lines.

Theorem 2.11. If a is the given line, P a point not on the line, and S the foot
of the perpendicular from P to a, then there exist exactly two distinct lines m and
n through P, on opposite sides of PS, which do not meet a and have the property
that every line through P lying within the angle between m and n that contains PS,

intersects a, while every other line through P does not.

To prove the existence of lines m and n described above, we will need Pasch’s
axiom of separation and Dedekind’s axiom of continuity, which are two of the prop-

erties Euclid assumed without explicitly stating them.

Pasch’s Axiom. If a line intersects one of the sides of a triangle but does not pass
through a vertex, it will intersect exactly one of the other two sides. If it does pass

through one of its vertices, it will intersect the opposite side.

Dedekind’s Axiom. For every partition of all the points on a line into two nonempty
sets such that no point of either lies between two points of the other, there is a point
of one set which lies between every other point of that set and every point of the

other set.

2 s RN

Figure 2.6: Proof of Theorem 2.11
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Proof. Let a be the given line, P a point not on the line, and S the foot of the
perpendicular from P to a. Construct a line b through P perpendicular to P.S. Line
b is divergently parallel to a. Let T" be another point on b and join it with S. The
points of ST can be partitioned into sets A and B such that each line joining P and
a point of the set A intersects a, while each line joining P and a point of the set B
does not intersect a.

Obviously, sets A and B are not empty, since S is in A and T is in B. Moreover,
no point of one set lies between two points of the other, for if this was not true,
we would have the following situation which is also described in Figure 2.6. Let U
be the element of A (PU is an intersecting line) and V' the element of B (PV is a
parallel line). Let R be the intersection of PU and a. If V' lies between U and 9,
then PV has to intersect SR by Pasch’s axiom, which contradicts the assumption
that V is the element of B.

Now we can invoke Dedekind’s axiom. Therefore, on ST there is a unique point X,
either in set A or in set B, such that PX divides parallels from intersecting lines.
To prove that X belongs to the set B assume the opposite, and denote the intersec-
tion of PX and a by ). But then we can choose any point Z on a such that point
Q is between S and Z, and in that case, PZ would intersect ST between X and T
This contradicts the fact that X is the limiting point between points of sets A and
B. Tt follows that limiting line PX (let us denote it by n), does not meet the line a.
By the same method, we can obtain the second limiting parallel line m on the other
side of PS. QED

d [ 1
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Figure 2.7: The parallels to a through P

Therefore, for a given line a and some external point P, there exist exactly two
limiting parallels m and n, and infinitely many divergently parallel lines which lie
between limiting parallels, within the angle that does not contain P.S. This can be
visualised as in Figure 2.7. It is convenient to distinguish between the two limiting
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parallels by calling m the left, and n the right limiting parallel, based on the side on
which they emanate from point P towards line a.

Theorem 2.12. With notation as in the previous theorem, the angles formed by PS

and each limiting parallel line are equal and acute.

Proof. Let the angle between PS and m be denoted by [, and the angle between
PS and n by v (see Figure 2.8). Suppose, contrary to our claim, that § > 7. Then
there exists F in the interior of § such that Z/SPFE = ~. By Theorem 2.11, PE
meets a, say at F. On the line a on the other side of S construct point F’ so that
FS = F'S. By SAS criterion, ASPF = ASPF'. Thus ZSPF = /SPF' = ~. This
clearly forces that F’ lies on n, and n intersects a, which is contradiction with n
being the limiting parallel line. Hence, angles 5 and ~ are equal.

To show that they are acute, we will again proceed by contradiction. Assume 3 and
v are obtuse. Construct line b through point P perpendicular to SP. By Theorem
2.11, the line b would intersect a, which is impossible since b is divergently parallel
line. Also, the first part of the proof rules out the possibility that § and v are
right angles. Now when we know that § and ~ are equal, they cannot be the right
angles, as if they were, m and n would coincide, and we would have the Fuclidean
case with only one parallel line (divergently parallel lines would not exist due to
Theorem 2.11). Therefore, angles 5 and ~ are acute. QED

Figure 2.8: Proof of Theorem 2.12

Definition 2.1. Given a line a and a point P not on a, let S be the foot of the per-
pendicular from P to a. The measure of the angle formed by the line SP and either
of the two limiting parallel lines from P to a is called the angle of parallelism.
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The angle of parallelism is the foundation for hyperbolic trigonometry. While
analysing it, Lobachevsky derived a number of trigonometric identities and formulae.
The most interesting property is that the angle of parallelism depends only on the
length of segment SP. If the distance from any point to the given line is equal to the
distance of any other point to the other line, the corresponding angles of parallelism
are also equal. There are several nontrivial expressions that describe the connection
between these two quantities. Furthermore, this relation between the length of a
segment and the size of a corresponding angle of parallelism is inversely proportional:
when the length of the segment increases, the angle of parallelism decreases. As the
segment becomes arbitrarily great, the angle of parallelism approaches 0°. And
conversely, if the length of SP approaches 0, that is, if the given point P is in close
proximity to the given line a, then the angle of parallelism approaches 90°, and the
limiting parallel line is very close to becoming a Euclidean parallel line.

P
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Figure 2.9: Limiting parallels asymptotically approach each other

Taking this into consideration, we can get some sense of how limiting parallel
lines behave. While the distance between divergently parallel lines becomes arbitrar-
ily great on both sides of the common perpendicular, limiting parallel lines diverge
in one direction, but at the same time, they asymptotically approach each other
in the opposite direction, meaning that they are gradually getting closer and closer
but do not meet at any finite distance. This is why they are often called asymptotic
parallel lines. We will prove this property in the following theorem, and it may
be visualised as it is suggested in Figure 2.9. As the distance between the lines is
approaching zero, we can think of them as having a point of intersection at infinity.
Points at infinity are also called ideal points. All lines asymptotically parallel to
each other are said to intersect at the same ideal point. For instance, if we observe
some line and three of its right limiting parallel lines, all four of them are assumed
to intersect at a single ideal point. Since every line has the right and left limiting
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parallel lines, every line will have exactly two ideal points, one in each direction,
besides all the regular points it contains. In Figure 2.9 ideal points of the line a are
labelled with W and €). However, it is important to emphasise that ideal points do
not belong to the hyperbolic plane, and it is not correct to say that limiting parallel
lines will eventually meet. It was simply convenient for mathematicians to intro-
duce ideal points, and later this move turned out to be highly useful. The whole
concept will be more clear when we consider it on the concrete models in the next
chapter. Another surprising feature is that ideal points can also substitute vertices
of a “triangle”.

Definition 2.2. A trilateral having one or more of its vertices at infinity is called
an asymptotic triangle. Singly, doubly and triply asymptotic triangles have one,

two and three vertices at infinity, respectively.

In Figure 2.9, there are three asymptotic triangles, SPWV, S P2 and PQQW. These
triangles have a lot of properties in common with ordinary triangles. Among them

is the Pasch’s axiom which will be needed in the proof of the following theorem.

Theorem 2.13. Limiting parallel lines approach each other asymptotically in one

direction and diwverge in the other.

Proof. Let n be the right limiting parallel line to the line a through the point P,
and let S be the foot of the perpendicular from P to a. Denote by §2 the point of
intersection at infinity of asymptotically parallel lines @ and n. Choose any point
R between S and P. Let m be the left limiting parallel to the line a through the
point R. As m does not intersect a and cannot pass through the ideal vertex 2 of
the asymptotic triangle SP (it cannot be both left and right limiting paralllel to
a), by Pasch axiom m will intersect n. Let () denote the point of intersection, and
let T' be the foot of perpendicular from ) to a. Choose R’ on the line n, so that
Q is between P and R’ and RQ = R'Q. Let S’ be the foot of the perpendicular
from R’ to a. Lines m and n are limiting parallels to a through @, so by Theorem
2.12, /ZTQR = ZTQR'. By SAS criterion, ATQR = ATQR', and TR = TR'. By
Common notion 8 and AAS criterion, ATRS = ATR'S’. Cosequently, SR = S'R’.
Since SR can be arbitrarily small, we have proved that limiting parallel lines n and
a asymptotically approach each other in one direction. To show that they diverge
in the opposite direction, it is sufficient to choose point R on SP such that P is
between S and R. The rest of the proof runs in the same way as before. The same
conclusion can be drawn for the left limiting parallel to a through P. QED
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G S T S’

Figure 2.10: Proof of Theorem 2.13

2.3 The defect and area of a triangle

Before we head to the models, two more concepts need to be explained, and
those are the defect and area of a triangle. If we recall that rectangles, and that
includes squares, do not exist in hyperbolic geometry (Theorem 2.5), it is clear
that the area cannot be measured in the same manner as in Euclidean geometry.
Fortunately, there is a very elegant solution to this issue, and it involves the defect
of a triangle.

As indicated earlier, the sum of the angles of a triangle in hyperbolic geometry
is always less than two right angles (Theorem 2.2), and it is convenient to address
the amount by which the angle sum differs from 2R 2.

Definition 2.3. For any triangle AABC, the defect of AABC' is defined by
d(AABC) =2R — (LABC + Z/BCA+ LCAB).

By Saccheri-Legendre Theorem, the defect of every triangle is nonnegative.
Clearly, in hyperbolic geometry it takes only positive values, while in Euclidean
geometry it always equals zero, which is why the term is never being used.
Another straightforward property is that congruent triangles have the same defects,
since corresponding angles of congruent triangles are equal. Furthermore, if a tri-
angle is divided into two triangles, the defect of the original triangle is equal to the
sum of the defects of the two triangles obtained by subdivision.

2In this section, R stands for the size of the right angle.
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Theorem 2.14 (Additivity of the defect). For a triangle NABC, if D is any point
between A and B, then

S(AABC) = §(AADC) + 6(ADBC).

Proof. Let angles of triangles be denoted as in Figure 2.11.
By definition,

S§(AADC)=2R—(a+¢1+m) and §(ADBC)=2R— (8+ s +).
It follows that
S(AADC) + §(ADBC) =4R — (a+ o1 + 711 + B+ @2 +72)
=4R— (a+ B+ 7+ %) — (p1 + ¢2)

=2R—(a+f+m7+7)
— §5(AABC).

QED

* B

Figure 2.11: Proof of Theorem 2.14

It may be useful to remind ourselves of a few conditions that the area function
must satisfy. It must be nonnegative, additive, and the areas of congruent triangles
must be equal. Note that this coincides with the above introduced defect. Therefore,
it makes sense to assume that the defect and area are closely related. Indeed, the area
of any triangle, denoted by A, is proportional to its defect, with a proportionality

constant depending on the unit of measurement.

Theorem 2.15. There is a positive constant k such that for any NABC,

An(apoy = K*6(AABC).
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At first sight, it may seem rather unnecessary to work with the defect instead
of calculating directly with the angle sum of a triangle. However, even though the
defect is additive, the angle sum of a triangle is not, and by replacing the defect
with the angle sum, the area of a triangle would not be well defined.

While in Euclidean geometry it is possible to construct a triangle of an arbitrar-
ily large area, this will not be the case in hyperbolic geometry. Since §(AABC) < 2R
for every triangle, an immediate consequence of the previous theorem is the exis-
tence of an upper bound for the area of a triangle. This means that no matter how
great the sides of a triangle might be, the area will always be less than this upper
bound. The largest defect 2R (and thus the largest area) is obtained in a triply
asymptotic triangle, whose all three vertices are at ideal points and hence all angles
are zero. This can be nicely visualised in the models (see Figure 3.21).

Another peculiar feature that follows directly from Theorem 2.15 is that the
larger triangles have the greater defects, and their angle sum is close to zero, while
the smaller triangles have the smaller defects, and the sum of their angles is ap-
proaching 2R. Therefore, very small triangles (and very small parts of the hyperbolic
plane) will behave almost like their Euclidean counterparts.
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3 Models of hyperbolic geometry

In the previous chapter, we justified the existence and many properties of the
two different kinds of parallel lines. However, even though theorems of hyperbolic
geometry were logically deduced from the axioms, they still seem to go against our
former experience. For someone whose eyes are accustomed to Euclidean geometry,
it is extremely difficult to imagine most of the characteristics of parallels that were
earlier explained. In spite of adjusting the diagrams so that they more accurately
resemble properties that we needed, on certain occasions, parallel lines did not look
parallel by any means, and it was self-evident that they would meet if they were
sufficiently extended. Furthermore, some lines were represented as straight while
others in the same diagram were curved, which served its purpose at that time but
is not the best way to deal with the issue of visualising the concepts of hyperbolic
geometry. In this chapter, we will overcome this obstacle by finally introducing the
models of the hyperbolic axiomatic system. A model for a formal axiomatic system
is a set of objects and relations that are defined in a specific way to correspond with
primitive terms of the axiomatic system and to satisfy all of the axioms. As we
build the rest of the system on those axioms, all further results that we obtained in
theory will necessarily be true in the model. Moreover, a statement describing the
model cannot be both true and false, and therefore if we are able to come up with
a model for an axiomatic system, then that system is consistent.

Hence, by exhibiting the models of the hyperbolic axiomatic system, we will
also confirm the consistency of the system. More precisely, our models will be
constructed within Euclidean geometry, and in that way we will transfer the question
of consistency from hyperbolic geometry to Euclidean. Primitive terms, such as
point, line and plane, will be interpreted in Euclidean terms. Under this kind of
interpretation, axioms of the hyperbolic system will be verified using the axioms and
theorems of the Euclidean axiomatic system. Consequently, if any contradiction
could be derived in hyperbolic geometry, then contradiction would inevitably be
found in Euclidean geometry, as well. We can conclude that hyperbolic geometry
is consistent only if the same applies to Euclidean geometry®. We will assume here
that the Euclidean axiomatic system is indeed consistent. This has not been proved
yet, and it is very unlikely that it will ever be proved. But that is the uncertainty

3The converse of the statement is also true. We can verify this by constructing a model of the
Euclidean geometry within the hyperbolic geometry. This kind of model can be found in [6, p. 514].
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that we can live with as there is no reason for suspecting otherwise.

Taking into account that Euclidean geometry has its limitations in comparison
to hyperbolic geometry, it is understandable that by translating hyperbolic concepts
into Fuclidean, some properties have to be distorted. For this reason, there are
different models that preserve different characteristics of the hyperbolic structure.
We will discuss the most common ones. As we will see, some models may have
their own properties that do not belong in the theory of hyperbolic geometry. If
something exists in theory, then it has to be fulfilled in the model, but the converse
of this statement is not always true. This is why it is not accurate to state that a
certain model is a hyperbolic plane, it is only an interpretation of the plane. As we
said earlier, model only assigns the meaning to the primitive terms of the axiomatic
system in such a way that all of the axioms are true, and we have to be careful not
to identify the model with the axiomatic system.

3.1 The pseudosphere

Around four decades after the discovery of hyperbolic geometry, in 1868, the
first model was presented. This worthy accomplishment was achieved by Italian
mathematician Eugenio Beltrami (1835-1900), whose only intention was to prove to
the world, which chose to be oblivious towards new discoveries, that the geometry
introduced by Lobachevsky, Bolyai and Gauss, was not a fiction. Beltrami recognised
that a surface illustrated in Figure 3.1, which was already known to mathematicians
at that time, can be placed in the context of hyperbolic geometry and serve as its
model. The surface is called the pseudosphere, and it is obtained by rotating a
tractriz around its asymptote.

Figure 3.1: The pseudosphere
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A tractrix is a very interesting curve also referred to as the “path of the obstinate
dog”. It will soon become clear why this name is so appropriate. Imagine a dog on
a leash, and its owner, positioned as in Figure 3.2. Point S represents the owner, [
is the road that he will follow, and a point P indicates the position of the dog. The
leash PS has some fixed length, and the walk starts with P.S perpendicular to [.
As the owner walks along [, the stubborn dog resists, and it is being pulled by the
owner, always behind him at the constant distance. The tractrix corresponds to the
path of the dog.

P

Figure 3.2: The tractrix

The pseudosphere is a surface of constant negative Gaussian curvature. We
will try to explain very briefly what is meant by that, without getting too deep into
the subject. To cover Gaussian curvature completely, a more detailed discussion is
required, but it exceeds the scope of this paper.

In simple terms, Gaussian curvature indicates how a surface bends in the vicin-
ity of a certain point. But before explaining the curvature of the surface, it is
necessary to start with the curvature of the curve. Without any previous knowl-
edge, we could still say with certainty that the straight line is not curved, while the
circle is. Then, if we take a step further, we could say that a small circle is more
curved than a larger one. It is intuitively clear that the sharper turning in the curve
means larger curvature. Therefore, the curvature of the circle, denoted by k, can be
described as the quantity inversely proportional to the radius of the circle, that is,
k= % The case with other curves is a little bit more complicated, as not all curves
are equally curved at each of their points. Nevertheless, we can tackle this problem
in a very simple way and use the above expression to calculate the curvature of any
curve.

On a smooth curve choose an arbitrary point P. Then choose arbitrary points
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P, and P, on the curve, one on each side of point P. There is a unique circle
containing P, P and P». Fix the point P, and let P, and P, approach P. As we
slide P, and P, towards the point P, we will obtain the circle that best approximates
the curve in the vicinity of the point P, and shares with the curve the same tangent
at P. This circle is called the osculating circle (see Figure 3.3). Now we can define
the curvature of the curve at the point P as the curvature of the osculating circle.
Note that if the curvature is not constant, the osculating circle will vary in size as it
moves along the curve, and it may also shift from one side of the curve to the other.
It is a matter of arbitrary convention which side of the curve determines positive
curvature, and which side determines negative curvature. For instance, in Figure
3.3 we could say that the curvature is positive if the osculating circle is below the

curve, and negative if the osculating circle is above the curve.

Py p Py
Figure 3.3: The osculating circle

Now we have the tools to determine the curvature of the surface. Choose an
arbitrary point S on a surface. Let ¢ be a tangent vector at S, and 7 a normal
vector at S. A plane spanned by 77 and ¥ intersects the surface in a curve called the
normal curve of the surface at the point S in the direction v. As ¢’ changes direction,
a different normal curve is obtained. We are interested in two normal curves, one
with the maximum curvature k;, and the other one with the minimum curvature
ko. These two curvatures are called the principal curvatures, and they are achieved
in perpendicular directions (see Figure 3./). Finally, the Gaussian curvature of the
surface at the point S, denoted by k, is defined as the product of the principal
curvatures: kK = kik,.

To determine instantly whether the surface has positive or negative Gaussian
curvature at some point, we can simply place the tangent plane at the point and
observe what is happening in the vicinity of that point. If the surface lies entirely
on one side of the plane, then the surface has positive Gaussian curvature at the
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Figure 3.4: Principal curves of a saddle surface

point. On the contrary, if the tangent plane intersects the surface in the observed
neighbourhood of the point, then the Gaussian curvature is negative.

A sphere is the surface of constant positive Gaussian curvature, a flat plane
and cylinder have the curvature zero, while a saddle is the example of the surface
with negative curvature. In general, positive Gaussian curvature is associated with
elliptic geometry, zero curvature is associated with Euclidean geometry and negative
curvature with hyperbolic geometry. This statement is not obvious and requires a
proof, which is omitted due to its length and complexity.

As we have already stated, the pseudosphere has negative Gaussian curva-
ture. The tractrix curves away from the axis of the pseudosphere while the circles
of revolution curve towards it. The tractrix curves less and less as it approaches
its asymptote (the axis), but at the same time circles of revolution get smaller and
smaller. Consequently, as one principal curvature decreases, the other one increases.
They perfectly balance each other, and moving sideways does not change anything.
Therefore the product of principal curvatures (i.e. the Gaussian curvature) is con-
stant. This is an essential property that makes a difference between a saddle surface
(illustrated in Figure 3.4) and the pseudosphere. The curvature of the surface must
be constant so that geometric objects can be moved from one part to another with-
out changing the angles and the shape. The curvature of the saddle is negative,
but not constant, and for that reason, it is not suitable for a model of hyperbolic
geometry.

Now when we know the shape of the pseudosphere, we need to determine what
are points, lines and plane in this model. A plane is interpreted as the surface itself,
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points are points on the surface, and lines are geodesics on the surface. A geodesic
can be defined as a curve that contains the shortest path in the surface between
two points. For instance, geodesics on the sphere are great circles. Pseudosphere,
on the other hand, has three different types of geodesics: tractrix, circle, and ro-
tating tractrix. The latter can be imagined as a curve wrapped around the entire
pseudosphere any number of times.

One may argue that the lines do not look straight again, and considering how
they are defined, it seems very difficult to confirm the Hyperbolic parallel postulate.
Daina Taimina (born in 1954), a Latvian mathematician, shared this same attitude
towards hyperbolic geometry. During her college, she struggled a lot with this
subject. According to her, the hyperbolic geometry required too much imagination
to make sense of it. After she passed the course, she hoped she will not have to
deal with this abstract mathematical theory ever again. The irony occurred 20
years later when, as a professor at Cornell University, she was supposed to teach
hyperbolic geometry. Not being left with many options, she had to find a way to
physically experience the strange concepts she was not able to visualise. That was
when she invoked her creative side and came up with the crochet model of the
hyperbolic plane.

Figure 3.5: Crochet model of the pseudosphere

The model in Figure 3.5 resembles a pseudosphere, with its wide part getting
wavier as it spreads out. Hyperbolic lines can be easily sewed onto the crochet
texture, and by folding the model, each of these lines can be made perfectly straight
in Euclidean sense. Lines in Figure 3.6 demonstrate that through one point there
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exist infinitely many lines parallel to a given line. They also manifest how two
parallel lines are the closest at one point, and then how they diverge from each
other on both sides. Taimina managed to show a lot of other properties of the
hyperbolic plane with the help of the crochet method. How she did it and more
about her work can be read in [12], the book from which the photos in Figures 3.5
and 3.6 are taken.

Figure 3.6: Lines in the crochet model

If we had gone through all of the postulates in order to make sure that each
one of them is satisfied, we would have disclosed that the pseudosphere actually
does not provide a complete model of hyperbolic geometry. One problem lies in
its boundary curve. In our description, the tractrix had a starting point, therefore
the pseudosphere has a circular edge on one side, and geodesics cannot be extended
infinitely in both directions. In the standard configuration, the pseudosphere is
represented as not one, but two infinite horns, attached at the wide parts. Even
though the pseudosphere would be infinite on both sides, not all geodesics could
be continued smoothly over the edge where the two horns would meet. So that is
not the way to get around the issue. Another problem is that the hyperbolic plane
is simply connected, while the pseudosphere is not. Roughly speaking, a surface
is simply connected if any closed curve on the surface can be continuously shrunk
into a point. In the pseudosphere, this cannot be done with the geodesics around
the axis of revolution. One possible solution to these two issues would be to wrap
the pseudosphere around itself an infinite number of times and expand the surface
infinitely beyond the rim. However, even this new surface, called the universal cover
of the pseudosphere, coincides only locally with the hyperbolic plane, and hence
it does not help either. In fact, according to David Hilbert, the problem regarding
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pseudosphere cannot be solved. He proved in 1901 that there exists no complete reg-
ular surface of constant negative curvature immersed in three-dimensional Euclidean
space. Thus, the pseudosphere does not serve as a model of the entire hyperbolic
plane, but only of the part of it. In this sense, the pseudosphere is comparable to
the cylinder. In forming the cylinder, we take a line segment in Euclidean geometry,
and at each endpoint of the segment, on the same side of it, we emanate perpendic-
ular rays. Then we identify those two rays, that is, paste them together. The result
is an infinitely long cylinder with a boundary, which represents only a part of the
Euclidean plane. The procedure of constructing the pseudosphere in the hyperbolic
plane is more or less analogous, and the pseudosphere can be thought of as being a
hyperbolic cylinder.

Although it does not portray the ideal and flawless model, the pseudosphere has
great historical importance. It is considered one of the milestones in the development
of hyperbolic geometry. Due to it, there was huge progress in understanding the
relations and concepts that exist exclusively in the hyperbolic plane, and it also
initiated the construction of other models. We will proceed with the models that
are all complete, but unlike the pseudosphere, not isometric (the distance in all of
them is distorted). Nevertheless, they are more convenient for illustrating various

hyperbolic objects and much simpler in comparison with the pseudosphere.

3.2 The Beltrami-Klein disk model

In the paper published in 1868, besides the pseudosphere, Beltrami also intro-
duced a disk model of the hyperbolic axiomatic system. Since his work was based
on differential geometry, the model more often carries the name of a German math-
ematician Felix Klein, who gave a more comprehensible description of the model in
an article released in 1871.

To build the Beltrami-Klein disk model, we fix a circle in the Fuclidean plane.
The circle is called the absolute circle, and its interior represents the hyperbolic
plane. Points in the model are Fuclidean points within the absolute circle, not
including the points on the boundary which are considered to be ideal points, or
points at infinity. Points outside the absolute circle (“beyond infinity”) are called
ultra-ideal points. Lines are interpreted as open chords of the absolute circle. The
open chord can be defined as a line segment joining two points on the circumference
of the circle, again not including the endpoints. Note that each line correlates with
exactly two ideal points, just as we stated earlier.
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Figure 3.7: Lines in the Beltrami-Klein disk model

A few of the lines are illustrated in Figure 3.7, and we are interested in relations
between line [ and lines through the point P. Lines [ and m clearly intersect at the
hyperbolic point. On the contrary, lines [ and n do not have an intersecting point in
the hyperbolic plane, but the Euclidean chords on which they lie meet at an ideal
point on the circumference of the absolute circle. Therefore we can think of [ and n
as meeting at infinity, which implies that they are asymptotically parallel. If lines
[ and o were extended, they would meet in an ultra-ideal point. However, since we
restricted the hyperbolic plane on the interior of the absolute circle, and lines [ and
o do not intersect in an ordinary point and do not share an ideal point, they are
divergently parallel. Obviously, through the point P, which is not on the line [,
there are two asymptotically parallel and infinitely many divergently parallel lines
te 1.

Moreover, if the hyperbolic line in this model is perceived as a portion of a
Euclidean line that lies inside the absolute circle, it is evident that for any two
points in the circle there exists a unique hyperbolic line containing them. While
the first postulate and the Hyperbolic parallel postulate are fairly straightforward,
a certain amount of work is required to confirm the rest of them. Starting with the
second one, we might wonder how can lines be infinite in both directions if they
are bounded by the absolute circle. From our perspective, it seems impossible for
lines to be longer than the diameter of that circle. The explanation lies in the way
the distance between the points is defined in this model. For obvious reason, the
Euclidean method of measuring length cannot be put into practice here, and it has
to be carefully modified.

Before we give a new definition of distance, the concept behind it can be easily
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understood through the following story illustrated in Figure 3.8. Imagine a two-
dimensional man living in the Beltrami-Klein disk and not being aware of the outside
larger space. One day the man decides to take a long walk in one direction, and
he brings a ruler with him. For the outside observer, the man would appear to be
walking towards the boundary, and he would seem smaller and smaller as he moves
away from the centre of the absolute circle. With each step, the man would shrink
together with the ruler he carries with him. If the man occasionally measures his
height, the height would be the same at the beginning of the walk and in the moment
of measurement, and for him, nothing would be changed. The most important fact
is that no matter how far the man walks, he will never be able to reach the boundary.
For all we know, his path may be infinitely long, just as the lines in the model are

infinite.
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Figure 3.8: An infinite walk

Apart from the property that we have just described, the distance function,
denoted by d, also needs to satisfy a couple of conditions (known as metric axioms).
For any hyperbolic points A, B and C', we must have:

1. (Non-negativity) d(A, B) > 0 with equality if and only if A = B.
2. (Symmetry) d(A,B) =d(B,A).
3. (Triangle inequality) d(A, B) < d(A,C)+d(C,B).

In order to achieve an appropriate formula for the length that fulfils all of the

above, we first need to introduce an auxiliary tool, called the cross-ratio.
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Definition 3.1. Given four collinear points A, B, C and D, we define the cross-
ratio (AB,CD) by

(AC)(BD)

(AD)(BC)

where (AC) stands for the Euclidean distance between points A and C'.

(AB,CD) =

Definition 3.2. Let A and B be points inside the absolute circle, and let ) and W
be the ideal points associated with hyperbolic line AB. Then the length d(A, B) in
the Beltrami-Klein disk model is defined by

d(A, B) = % In(AB, QU)| . @)

We will see that the definition is independent of the order in which A and B,
or 2 and ¥ are listed. To show that with this metric the lines are indeed infinite,
we just need to fix one of the points A and B, and let the other one slide towards
Q2 or U. The cross-ratio (AB, QV) will approach either zero or infinity, and in both
cases, the distance between A and B will approach infinity.

Theorem 3.1. The distance given by the formula (4) is well defined, that is, it

satisfies metric axioms.

Proof. The proof falls naturally into three parts.
Non-negativity. It is trivial that d > 0. The equality part is as easy to confirm:

d(A,B) =0 <= In(AB,Q¥) =0 <= (AB,QV¥)=1 <= A=8B.

Symmetry. If (AB,QU) = A, then by definition of the cross-ratio, (BA, QW) = 1.
Now we have

1
d(B, 4) = 5 |In (BA,Q¥)| =

i iy gy 1L 1
ln—‘zi‘ln)\ |:§|—ln()\)|:§|ln(AB,Q\IJ)|

1
21 A

= d(A, B).

This means that the order of A and B in the cross-ratio in (4) does not affect
d(A, B). Since (AB,Q¥) = (BA,¥Q), it does not matter in which order we write
) and U either.

Triangle inequality. A certain knowledge of projective geometry is required to prove
the triangle inequality. This is why we will show only equality when A, B and C'
are collinear. For complete proof, we refer the reader to [8, p. 157|.
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For convenience, let A lie between B and W, and let C' lie between A and B (as in
Figure 3.9). Due to this arrangement (AQ) > (CQ), (C¥) > (AV), etc. Now the
absolute value signs can be dropped because cross-ratios (AB, Q¥), (AC, Q¥) and
(CB, QW) are all greater than 1, and natural logarithm of each of them is positive.
This gives

d(A,C) +d(C, B) = %ln(AC’, QU) + %ln(C’B, Q)
L, (L2009 CRIEN)
> ™ (awyca)  (Cv)(BY)

— %ln(AB, Q)
— d(4, B).

QED

Figure 3.9: Proof of Theorem 3.1

The Beltrami-Klein disk model preserves the “straightness” of Euclidean lines,
but not without the cost. Not only distance differs from its Euclidean counterpart,
but so does angle measure. If we consider the asymptotic triangle in Figure 3.7,
formed by lines [, m and n, the sum of its angles equals two right angles in the Eu-
clidean sense, and we know this is not the case in hyperbolic geometry. In addition,
the angle enclosed by two asymptotically parallel lines is supposed to be zero. This
is one of the examples why we cannot measure angles in the way that we used to.

Instead of developing the whole new method of measurement, we will show at
the end of this chapter that there exists a transformation between the Beltrami-Klein
disk and the Poincaré disk model, in which the Euclidean angles are preserved. The
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transformation will map lines to lines, and it will be conformal, which means that
the angle between two lines in the Beltrami-Klein model will correspond to the angle
between their images in the Poincaré model.

At this moment, we will describe only the right angles and demonstrate how
to construct a line perpendicular to a given line. There are two different cases to
consider, depending on whether a line passes through the centre of the absolute
circle. Both situations are illustrated in Figure 3.10.

Definition 3.3. Let [ and m be two lines in the Beltrami-Klein disk model and let
at least one of them pass through the centre of the absolute circle. The lines [ and

m are said to be perpendicular if they are perpendicular in the Euclidean sense.

Definition 3.4. Let | be a line in the Beltrami-Klein disk model that does not pass
through the centre of the absolute circle, and let t; and ty be the Fuclidean tangents
to the absolute circle at the ideal points associated with the line . The Euclidean

point of intersection of tangents t1 and ty is called the pole of the line |, and we
denote it by P(l).

Definition 3.5. Let [ and m be two lines in the Beltrami-Klein disk model such that
neither of them passes through the centre of the absolute circle. The line m is said

to be perpendicular to | if the Fuclidean line extending m passes through the pole

~
t1 S
~
- — -——— Al
"_— ~~~ =TT T~ \\*
4 Ss 4 -~
7’ l ~ b
’ \ ’
’ S i
’ ~
’ b1 ’ l A
1 \ / \\\
! \ ! VoS
] . ] T
1
1 [ ] 1 1 1 S
1 1 1 1 N
\\ 1 \‘ 1 \\ P(l)
] /]
\ \ S -
] \ - -
\ ’ A ’ PR
«m ’ s m ’ - L
S . b 4 - N
e ’ ¥ - .
\N ’, ~N -
LT B S
tg _.--"

-
-

Figure 3.10: Perpendicular lines in the Beltrami-Klein disk model

Hence all lines perpendicular to [ when extended pass through the pole P(1).
It is evident that the pole is ultra-ideal point, and that [ # m implies P(l) # P(m).
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Furthermore, the perpendicularity defined above is symmetric. If m is perpendicular
to [, then [ is perpendicular to m, and when extended, each of them passes through
the pole of the other one.

There is one aspect of hyperbolic geometry that is perfectly demonstrated in
this model. Let us consider lines that are divergently or asymptotically parallel,
and observe what happens with their common perpendicular (if they have one). By
Definition 3.5, the common perpendicular of two lines [ and m should pass through
both of their poles P(l) and P(m). It can be proved that if [ and m are divergently
parallel, a Euclidean line joining their poles intersects the absolute circle in two
points. A part of that line that lies within the absolute circle gives the common
perpendicular between [ and m *. In fact, the ultra-ideal point at which divergently
parallel lines meet if they are extended is the pole of their common perpendicular
(see Figure 3.11).

Figure 3.11: Common perpendicular between divergent parallels

However, if [ and m are asymptotically parallel, the Euclidean line joining P(l)
and P(m) is the tangent to the absolute circle at the ideal point in which [ and m
“meet”. As no part of the tangent lies inside the absolute circle, asymptotic parallels
do not have a common perpendicular (see Figure 3.12). This illustrates the theory
from the previous chapter.

The only remaining segment in this model that should be clarified is the ex-

istence of circles. If we return to that two-dimensional being living inside the disk

41f one of the divergently parallel lines [ and m is the diameter of the absolute circle, say [, then
the common perpendicular passes through P(m) and is perpendicular to [ in the Euclidean sense.
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Figure 3.12: Common perpendicular “at infinity” between asymptotic parallels

and we let him walk around the fixed point, always at a constant distance from
that point, the result would be hyperbolic circle regardless of how that circle would
appear to the observer outside the disk. Considering how distance is defined, it
should not come as a surprise that hyperbolic circle does not quite resemble the
Euclidean one. The Figure 3.13 shows a circle with centre C' and radius AB. As
we can see, it takes an oval shape, and the centre is not where we would expect it
to be. Even though it does not seem that way, the centre C' is equidistant to every
point on the circumference. This is also an opportunity to observe how a segment
of some constant hyperbolic length expands or contracts in Euclidean sense with
respect to its position in the disk. As it gets nearer to the boundary of the disk,
its Euclidean length will decrease significantly. The only occasion when hyperbolic
circle agrees with Euclidean one is when its centre coincides with the centre of the
absolute circle.

-———

______

Figure 3.13: Circle in the Beltrami-Klein disk model
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3.3 The Poincaré disk model

In 1882, a French mathematician Henri Poincaré (1854-1912) studied two mod-
els of hyperbolic geometry that today carry his name: the Poincaré disk and the
Poincaré half-plane model. We will first deal with the disk model as it naturally
comes after the Beltrami-Klein disk with whom it shares many similarities. De-
spite the resemblance between them, the Poincaré disk has a big advantage over the
Beltrami-Klein disk. It preserves Euclidean angles, and we say that it is conformal.
The hyperbolic angle between two intersecting hyperbolic lines is the same as the
Euclidean angle between those lines. This makes Poincaré disk more suitable to
work with, and we can think of it as of an improved version of the Beltrami-Klein
disk model.

The hyperbolic plane and points are represented in the same way in both of
the models. The hyperbolic plane again resides in the interior of the absolute circle
that is fixed in the Euclidean plane. Hyperbolic points are Euclidean points lying
inside the absolute circle, points on the boundary are ideal points, and those that
lie outside the circle are ultra-ideal points. Definition of lines is what makes the
difference between the two disk models. There are two kinds of lines in the Poincaré
disk, and they are illustrated in Figure 3.14. The hyperbolic line is either a Euclidean
diameter of the absolute circle or an arc of a circle orthogonal to the absolute circle.
Endpoints on the boundary are not part of the line. Two circles are said to be
orthogonal if the tangents at the points of intersection are perpendicular. Note
that a diameter of the circle also meets the boundary at right angles, and it can be
thought of as an arc of a circle of infinite radius.

Figure 3.14: Two kinds of lines in the Poincaré disk
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Now we need to verify that under this terminology all of the postulates are
satisfied. To begin with the first one, let us consider two hyperbolic points in the
disk. If these points are collinear, in the Euclidean sense, with the centre of the
absolute circle, then they lie on the unique hyperbolic line of the first type. If these
points are non-collinear with the centre, then there exists a unique circle that passes
through the two points and is orthogonal to the absolute circle (this follows from a
theorem of Euclidean geometry, the proof of which can be found in [14, p. 279]).
The arc of this circle that lies within the absolute circle is the unique hyperbolic
line incident with the given points. Therefore, the first postulate is fulfilled.

With all the tools that we have developed in the previous section, the verifi-
cation of the second postulate is just as easy. Since points on the boundary are
considered to be infinitely far away, all hyperbolic lines extend to infinity. This is
supported by metric very similar to that of the Beltrami-Klein model. The proof
that the following expression satisfies all metric conditions is analogous to the proof
of Theorem 3.1.

Definition 3.6. Let A and B be points inside the absolute circle, and let () and ¥
be the ideal points associated with hyperbolic line AB. Then the length d(A, B) in
the Poincaré disk model is defined by

d(A, B) = [In(AB, QU] . (5)
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Figure 3.15: Circle in the Poincaré disk model

Our next concern is Postulate 3. When a set of all points equidistant from a
given point is constructed in Poincaré disk, the result is Euclidean circle but with
the centre that differs from the Euclidean centre (except when it coincides with the
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centre of the absolute circle). A circle with the centre C' and the radius CD is
constructed in Figure 3.15.

Considering that the Poincaré disk is conformal, Postulate 4 is immediately
satisfied. Recall that the angle between two intersecting arcs is determined by the
measure of the angle formed by the tangents to the arcs at the intersecting point.
The Figure 3.16 shows two pairs of perpendicular lines with associated tangents at
the point of intersection.

,”‘— ~~\\
~
4
p ! N
’ N
(L \

4 \
/ \
! \
! \
! 1
] ® 1
1 ]
\ [
\ /
v 7
\/ \/
A ’,

m
N ’
~ ’
~ L d
\~ ‘f
S -

Figure 3.16: Perpendicular lines in the Poincaré disk model

Having confirmed the first four postulates, we can now turn to parallels, our
principal subject of interest. In Figure 3.17, we have a line [ and a point P not on
l. There are three different lines m, n and o passing through P, and the task is
to determine the nature of these lines with respect to . The arrangement of lines
is much the same as in the Beltrami-Klein disk in Figure 3.7. While [ and m are
intersecting lines, [ and o share no common points, and they are divergently parallel.
Since Euclidean circles associated with lines [ and n intersect at the point on the
boundary of the absolute circle, lines | and n are asymptotically parallel. Bearing
in mind that a line has two ideal points, there are exactly two asymptotic parallels
to [ through the point P. On the other hand, through the same point, it is possible
to construct infinitely many divergently parallel lines to .

Among the models of hyperbolic geometry, the Poincaré disk is in a favourable
position when it comes to illustrating various geometric objects and relationships
between them. In comparison to the Beltrami-Klein disk, some of the lines in the
Poincaré model no longer seem straight, but they ensure that the angles are repre-
sented accurately. Due to this, the Poincaré disk provides a great visualisation of
different concepts from the theory of hyperbolic geometry developed in the previous
chapter. We proceed to demonstrate several fragments of this matter. We will also
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Figure 3.17: Lines in the Poincaré disk model

use this as an opportunity to summarise all the main results.

To remind ourselves of the properties of parallels, let us consider Figure 3.18
that shows divergent parallels [ and m with their unique common perpendicular
n. The diagram is in agreement with theorems that we have proved earlier, and it
suggests that parallels are not equidistant at every point. They seem to be closest
to each other at points of intersections with the common perpendicular, and then
they appear to diverge from one another on either side of the perpendicular.

Figure 3.18: Divergent parallels with their common perpendicular

Many theorems regarding divergent parallels were proved with the help of Sac-
cheri quadrilateral. This peculiar object is shown in Figure 3.19. All characteristics
are neatly portrayed and can be easily recognised. Arms AD and BC are equal
and perpendicular to the base AB. The summit CD is parallel to the base, and
the summit angles Z/BC'D and ZADC' are equal and acute. Furthermore, the line
PS joining the midpoints of the base and the summit is perpendicular to both.
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This indicates that PS is also the unique common perpendicular between divergent
parallels AB and C'D. In spite of the fact that the distance in the disk is distorted
and that we should not rely on the diagram when comparing lengths, in this case
the diagram is not wrong, and the summit is indeed longer than the base, just as
the arms are greater than PS. When we divide the Saccheri quadrilateral along
this perpendicular PSS, we get two congruent Lambert quadrilaterals ASPD and
BSPC. In each Lambert quadrilateral, three of its angles are right angles, while
the fourth one is acute.

-
- -

______

Figure 3.19: Saccheri quadrilateral in the Poincaré disk

A line in the disk models can be denoted by two hyperbolic points, by two
ideal points associated with it, or by a combination of one hyperbolic point and one
ideal point. In Figure 3.20, a line U2 is given where ¥ and 2 are its ideal points.
Through the point P, there are two asymptotical parallels to the given line, P2 and
PU. Both of them approach the given line asymptotically as we move towards the
ideal points they have in common, and they diverge in the other direction. If S is
the foot of the perpendicular from P to W), then angles formed by PS and each
asymptotic parallel are angles of parallelism. We know that these angles are acute
and equal.

Arcs P2 and U are both orthogonal to the absolute circle at the point €.
Therefore, they share the tangent at the point of intersection, which implies that
the angle between them is zero. Same applies to the angle between arcs W() and
PW. Since all three angles of triangles APSW and APSQ are equal, these singly
asymptotic triangles are congruent. They surely do not seem congruent, but we
need to take into account that the distance in the disk is seriously distorted. In the
same diagram we can also find doubly asymptotical triangle APWQ. It is clear that
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these triangles have a positive defect, that is, the sum of the angles in each of them

is less than two right angles.
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Figure 3.20: Asymptotic parallels in the Poincaré disk

A triply asymptotic triangle is illustrated in Figure 3.21. All three vertices are
at the boundary of the absolute circle, and the sum of its angles is zero. Accordingly,
the defect of this triangle reaches its maximum value, and so does the area. As
pointed out earlier, the triply asymptotic triangle is a triangle of the largest possible
area and the smallest possible angle sum. Another striking result is that all triply

asymptotic triangles are congruent.

Figure 3.21: Triply asymptotic triangle in the Poincaré disk

Note that the asymptotic triangle is not an actual triangle in the model, be-
cause its ideal vertices are not part of the hyperbolic plane. However, it can be
approximated by the legitimate triangle whose angles may be as close as desired
to zero. Angles in the hyperbolic triangles tend to zero as their vertices approach



26

infinity which in the disk models is represented by the boundary of the absolute
circle.

Before we continue with the next model, we take a moment to make a brief
digression on the subject worth of mentioning. The hyperbolic geometry was inter-
esting not only to mathematicians, but it also caught the attention of several artists.
The most significant among them was a Dutch graphic artist Maurits Cornelis Es-
cher (1898-1972). Inspired by the Poincaré disk, in 1958 he created Circle Limit I,
the first out of four figures of a Circle Limit series, in which he produced infinitely
repeated patterns placed in a disk. The resemblance of the Circle Limit I with the
Poincaré disk is evident (see Figure 3.22). By following the spines of the fish, we
get either a Euclidean straight line through the centre of the disk, or a Fuclidean
arc of a circle orthogonal to the boundary. Although the fish seem smaller as they
approach the boundary, all the black fish are the same size, and so are the white
fish.

In 1959, Escher recreated the first piece and made it more delicate. In this
improved version, called the Circle Limit I1I, a white line links the backbones of
the fish of the same colour, and the fish swim one after another, head to tail, in
one direction. While more appealing than the Circle Limit I, a closer examination
reveals that white lines in this disk do not intersect the boundary at the right angles,
and therefore they do not represent hyperbolic lines at all. Nevertheless, this does
not diminish the value of Escher’s work. He created many more marvellous art
pieces based on different mathematical concepts and showed what an astonishing
art can be produced when the passion for mathematics is combined with creativity.

Figure 3.22: Circle Limit I and Circle Limit 111, respectively from left to right
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3.4 The Poincaré half-plane model

Another conformal model of hyperbolic geometry due to Poincaré is the half-
plane model. It is perhaps the most commonly used model, not because it provides
better visualisation than the previous disk models, but rather because it is more
appropriate for various calculations. It has a broad application, especially in complex
analysis.

To develop the half-plane model, in the Euclidean plane we fix a line instead
of a circle. This line is called the absolute line. Then we choose one of the two
Euclidean half-planes determined by the absolute line to represent hyperbolic plane.
For convenience, in all our diagrams the hyperbolic plane will be the upper half-
plane associated with the horizontal absolute line. Hyperbolic points are Euclidean
points lying in the chosen half-plane, not including the points on the absolute line
which are called ideal points. A hyperbolic line is again interpreted in two different
ways. It is either a Euclidean ray emanating from a point on the absolute line and
perpendicular to the line, or a Euclidean semicircle with centre on the absolute line.
Note that semicircles are orthogonal to the absolute line as well. These two types
of lines are illustrated in Figure 3.235.

o0
A

Figure 3.23: Two kinds of lines in the Poincaré half-plane

In addition to the ideal points on the absolute line, one ideal point is at infinity,
associated with the direction perpendicular to the absolute line. In other words, it
represents the other “end” of every vertical ray. We denote this ideal point by Z, in
order to avoid confusion with ideal points on the absolute line. Considering that all
vertical lines share the same ideal point Z, they are all asymptotically parallel to one
another. An example are lines n and ¢ in Figure 3.2/. Line n is also one of the two
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asymptotic parallels to the line [ through the point P. Another line through P that
shares with [ an ideal point on the absolute line is the line m, while line o through P
has no points in common with [ and it is one of its infinitely many divergent parallels
through P. Hyperbolic lines intersect if they intersect in the Euclidean sense. One

pair of intersecting lines are o and q.

A A

q

Figure 3.24: Lines in the Poincaré half-plane

In Figure 3.2/, lines [, m and n form a doubly asymptotic triangle. One could
easily fail to notice that in the same diagram there exists a singly asymptotic triangle
as well. It is formed by lines ¢, o and n. Although it does not appear as a triangle,
we should not forget that the point Z at infinity is thought to be a mutual “endpoint”
to lines g and n. Figure 3.25 shows two different kinds of triply asymptotic triangles.
In the first one, all ideal vertices ©, A and ¥ are on the absolute line, while in the
asymptotic triangle next to it, vertices ¥ and {2 belong to the absolute line, but the
third vertex is at the ideal point Z at infinity.

) A b)) v 194

Figure 3.25: Triply asymptotic triangles in the Poincaré half-plane
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Since Poincaré half-plane is essentially closely related to the Poincaré disk, there
is no need to go through all of the postulates. It is enough to briefly explain and
justify only the first two. Verification of the remaining three postulates is trivial.

To confirm that for any two given points A and B there exists a unique hyper-
bolic line, we drop a Euclidean perpendicular from one of the given points to the
absolute line. If another given point lies on that perpendicular then the perpendicu-
lar is the unique hyperbolic line containing both given points. If that is not the case,
then Euclidean perpendicular bisector of Euclidean segment AB intersects absolute
line in a point C' that is equidistant in Euclidean sense from both A and B. The
semicircle with centre C' is the unique hyperbolic line passing through A and B.

Infinity of lines follows from the metric. Distance between two points A and B is
defined in the same way as in the Poincaré disk (Definition 3.6). When the formula
is applied to a vertical line, we take one of the ideal points, say ¥, as the point at

AQ)

infinity, and the cross-ratio (AB, QW) is reduced to the ratio (AB,2) = gB—Q).

A X v 2

Figure 3.26: Different lines and curves in the Poincaré half-plane model

Now we turn our attention to Figure 3.26. There are several Euclidean circles,
circular arcs and rays, and we have not assigned the meaning to some of them
yet. Semicircle [ and ray n are orthogonal to the absolute line, so they represent
the hyperbolic lines. We are also familiar with the interpretation of the Euclidean
circle k. Since it is positioned entirely within the hyperbolic plane, it serves as a
hyperbolic circle. Euclidean circle h, on the other hand, contains an ideal point
and cannot be classified as a hyperbolic circle, just as circular arc m, and rays o

and p are not orthogonal to the absolute line and cannot be identified as hyperbolic
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lines. However, none of them is meaningless, and our next goal is to describe their
significance and place them in the context of the hyperbolic geometry.

One advantage of Euclidean parallel lines over hyperbolic parallels is that they
are equidistant. One would like to develop a similar notion of this important and
useful property in the hyperbolic geometry. Following the notation of Figure 3.26,
let [ be a given line associated with ideal points A and X on the absolute line, and
let P be a point not on [. If we construct a curve through P that is at every point
equidistant to [, the result is circular arc passing through A, P and ¥. Even though
it might not seem that way, each point of circular arc m in Figure 3.26 is indeed at
the same hyperbolic distance from the line [. It does not come as a surprise that
the curve m is called the equidistant curve, or hypercycle.

For each line and a given distance, there are two equidistant curves, one on
each side of the line, forming equal angles with the absolute line at both ideal points
associated with the given line. Note that the equidistant curve and the absolute line
do not enclose the right angles. Furthermore, it can be proved that any hyperbolic
line perpendicular to [ is also perpendicular to the equidistant curve. In case of the
vertical type of the hyperbolic line in the Poincaré half-plane model, equidistant
curves are rays emanating from the ideal point of the given line. In Figure 3.26
lines 0 and p are equidistant curves at the same distance from the line n. An
interesting fact is that we have already stumbled upon equidistant curves earlier;
the fish backbones in Escher’s Curcle Limat II1 represent equidistant curves.

It remains to determine the meaning of the Euclidean circle h in Figure 3.26.
For this purpose, we consider the hyperbolic circle k with centre C through the fixed
point 7". As previously mentioned, a line in Euclidean geometry can be considered as
a circle of infinite radius. We will now observe what curve is obtained in hyperbolic
geometry when the centre of a circle tends to infinity.

Due to the distorted distance in the model, the hyperbolic centre of circle k
does not coincide with the Euclidean centre. If C” denotes the Euclidean centre
of circle k, and €2 denotes the foot of the Euclidean perpendicular from C’ to the
absolute line, then it can be shown that the hyperbolic centre C lies between €2 and
C” on this perpendicular (on the portion inside k). In other words, the hyperbolic
centre appears slightly closer to the absolute line than the Euclidean centre. Now
suppose that we move the centre C' along the perpendicular C’€) towards the absolute
line. Since point T is fixed, as the centre approaches the infinity, the radius of k

approaches infinity as well. The limiting position of circle £ is the new curve, denoted
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by h in Figure 3.26, with hyperbolic centre at ideal point ). Containing an ideal
point, it can no longer be a hyperbolic circle. Instead, it is called the horocycle.

In the Poincaré half-plane model, a horocycle takes the form of either a Eu-
clidean circle tangent to the absolute line or a Euclidean line parallel with the
absolute line, depending on whether the centre of the horocycle is an ideal point
at the absolute line or at Z at infinity. Every hyperbolic line passing through the
hyperbolic centre of the horocycle is perpendicular to that horocycle. This property
is illustrated in Figure 3.27, on horocycle h with hyperbolic centre €). Since any hy-
perbolic line associated with the ideal point €2 is orthogonal to the Euclidean circle
h at €1, it is necessarily perpendicular to h at the other point of intersection. The
Figure 3.27 also shows concentric horocycles e and f. They are both tangent to the
absolute line at the ideal point W. Even though f seems smaller in size than e, each
one of them is infinite in length.

v

Figure 3.27: Horocycles in the Poincaré half-plane model

As we have seen, a Euclidean circle can have several roles in the Poincaré half-
plane, according to its position relative to the absolute line. It could represent a
hyperbolic line, hyperbolic circle, equidistant curve or horocycle.

We have illustrated the equidistant curves and horocycles within Poincaré half-
plane model, but it is important to emphasize that they belong to the hyperbolic
axiomatic theory. Therefore, they are model-independent and exist in every model
of hyperbolic geometry.
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3.5 The hemisphere

The hemisphere is rarely used as a model itself, but rather as a tool to estab-
lish transformations between other models. The Beltrami-Klein disk and the two
Poincaré models seem to be, in their essence, fairly similar. We will show that there
exists an isomorphism from one model onto the other. Two models are said to be
isomorphic if a one-to-one correspondence can be set up between their objects, while
the relations between objects are preserved.

The isomorphism between the Beltrami-Klein disk and the Poincaré disk is illus-
trated in Figure 3.28. We start with the sphere in the Euclidean three-dimensional
space, with N denoting the north pole of the sphere, and S denoting diametrically
opposite south pole. Let the Beltrami-Klein disk be placed in the plane tangent to
the sphere at the point S, in such a way that the centre of the absolute circle is
at S, and the absolute circle is of the same radius as the sphere. Now we project
orthogonally the entire Beltrami-Klein disk onto the sphere. The absolute circle
projects to the equator of the sphere, and the points within the disk are sent to the
points on the southern hemisphere.

N

Figure 3.28: An isomorphism from the Beltrami-Klein disk to the Poincaré disk

The hemisphere represents another model of hyperbolic geometry. To determine
how the hyperbolic line is defined in this model, it is sufficient to observe the image
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of the hyperbolic line from the Beltrami-Klein disk under the projection. If [ is an
open chord of the absolute circle, then the vertical plane which intersects the disk
along the given line meets the hemisphere in a semicircle I’ orthogonal to the equator
of the sphere. Endpoints of the semicircle (points on the equator) are not part of
the hyperbolic line.

Having executed the initial step, we can now proceed to the second part of the
transformation. To obtain the Poincaré disk model, we project stereographically the
southern hemisphere from the north pole N onto the original plane. The equator
of the sphere projects to the circle greater than the absolute circle of Beltrami-
Klein disk, and the southern hemisphere maps to its interior. The semicircle of the
hemisphere I’ projects to I” which is either a diameter or a circular arc orthogonal to
the boundary. The former occurs when the line I’ passes through the south pole of
the sphere. Note that this whole process is reversible. Thus, under the composition
of orthogonal and stereographic projection, there exists a one-to-one correspondence
between the points P and P” of the Beltrami-Klein and the Poincaré disk model,
and a one-to-one correspondence between the lines [ and [” of the two models, such
that P lies on [ if and only if P” lies on [”. This isomorphism also preserves the
congruence of segments and angles.

Figure 3.29: An isomorphism from the hemisphere to the Poincaré half-plane
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Similar transformation can be established with the Poincaré half-plane model
(see Figure 3.29). This time the southern hemisphere is projected stereographically
from the point on the equator, denoted by W, to the plane tangent to the sphere
at the point diametrically opposite to W. The equator is mapped to the horizontal
absolute line, and the points of the southern hemisphere are sent to the points of
the lower half-plane determined by the absolute line. A semicircle of the hemisphere
becomes either semicircle centred at the absolute line or a vertical ray perpendicular
to the absolute line. The point W got lost in the stereographic projection, but we
know that it is mapped to the point Z at infinity since all semicircles passing through
W map to vertical rays passing through Z.

Therefore, we have found an isomorphism between the four models of hyperbolic
geometry. In fact, it is possible to prove that all models of hyperbolic geometry
are mutually isomorphic. An axiomatic system with this property is said to be
categorical. This is one of the characteristics that hyperbolic geometry shares with
Euclidean geometry. It implies that there is basically only one distinct representation
for the axiomatic system. Interpretation of objects within the system may vary from
model to model, but they essentially remain “the same”. Consequently, we have the
freedom to move between the models, and we are able to view objects and relations of

hyperbolic geometry from different perspectives, while nothing significantly changes.
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4 Geometry of the physical world

Having developed the models that support the theory, it is now indisputable
that hyperbolic axiomatic system is just as consistent and accurate as Euclidean
geometry. Nevertheless, given that we do not encounter hyperbolic geometry in
everyday life, one may easily draw the wrong conclusion that the entire analysis
that we have done so far serves only as an amusing intellectual game. It would be
misleading to think of geometry as the branch of mathematics in which we start with
a set of arbitrarily selected axioms and then logically deduce different results from
them just for the sake of entertainment. While it is possible to practice mathematics
solely for the beauty of mathematics itself, it is highly unlikely that any professional
mathematician would devote her or his life to a field that neither proves fruitful nor
has a higher purpose. An axiomatic system that does not lead anywhere eventually
becomes abandoned and forgotten.

Hyperbolic geometry, on the other hand, did not receive the attention it de-
served during the lifetime of Lobachevsky, Bolyai and Gauss, but ultimately, its
great potential was recognised, and the true value came to light. Perhaps the most
powerful application is the one related to the geometry of the universe. Being one of
the oldest branches of mathematics, geometry has always been interconnected with
the physical world. Ever since ancient times, it was a reliable source of information
about the real spatial relationships. Conventional wisdom has it that the world in
which we live is best described by Euclidean geometry. However, how can we be
sure that the world is not, in fact, hyperbolic or spherical? After we accept the idea
that Euclidean geometry is only one of the several candidates, a major question
that arises is which of the possible geometries most accurately represents the phys-
ical space around us. This seemingly simple question actually deals with a complex
matter and is quite hard to answer. The phrase “there is more than meets the eye”
has never been more appropriate than in this context.

One feasible approach to the problem would be to find a physical triangle and
precisely measure its angles. This way, we could determine whether the sum of
the angles is in agreement with hyperbolic, Euclidean or spherical geometry. The
first known experiment of this kind was conducted by Gauss, although we cannot
claim with certainty that he had any intention of finding the evidence that the
geometry of the space was non-Euclidean. In 1820 Gauss was in charge of mapping

Hannover, a state in Germany. In order to do so, he invented a measuring device
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which relied on reflected sun rays. Gauss assumed that the light travels in a straight
line, and he observed a huge triangle formed by light rays with vertices at the
peaks of three mountains. Results that he gathered were inconclusive; deviation of
the angle sum from two right angles was within experimental error. However, this
should not be taken as confirmation of Euclidean geometry. As a matter of fact,
Euclidean geometry cannot be empirically confirmed because no matter how precise
instruments we have, and how close the sum of the angles is to two right angles, the
experimental error can never be entirely eliminated. With this kind of research, we
can only prove that the space is non-Euclidean, provided that the result significantly
differs from the Euclidean angle sum.

Furthermore, we mentioned earlier (in Section 2.3) that small hyperbolic trian-
gles are indistinguishable from Euclidean ones, but “small” is a relative term. It is
not specified just how large triangle should be for its defect to be measurable. FEven
though the Gauss’s triangle was enormous (its longest side was over 100 km long),
perhaps it was still too minor for any considerable variation. In more recent times,
similar experiments were conducted on far greater triangles with distinct stars as
vertices. The outcome of every experiment was the same; no significant deviation
has been obtained. But even these tremendous triangles can be considered small
compared to the overall size of the universe.

A different route to determine the nature of the geometry of the universe is to
detect its curvature. Generally, the most effective way to recognise the curvature
of some space is by observing that space from the outside. Unfortunately, this
approach is clearly impossible when it comes to the universe. We might notice that
our situation is analogous to that of the two-dimensional inhabitant of the Beltrami-
Klein disk in Figure 3.8. Due to the inability to externally view the world in which
we live, we have no choice but to seek an alternative method to comprehend its true
characteristics.

Major scientific contribution in this area was made by Albert Einstein (1879—
1955). According to his theory of general relativity, the gravity of a massive object
in the universe bends the space in the vicinity of that object. Distorted space causes
the light rays affected by a gravitational field to no longer travel in a straight line,
even though we perceive them as straight. Therefore, the curvature of the universe
varies from one part of the universe to another. For instance, the curvature in
the vicinity of the sun is greater than the curvature near the Earth. As a result,
when describing the space, all three geometries need to be considered. While some
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portions of the universe are best approximated by Euclidean geometry, for other
regions hyperbolic and spherical geometry might be more appropriate.

Nevertheless, scientists believe that there is one overall curvature of the entire
universe. This conjecture sounds less strange when we realise that much the same
circumstances apply to the surface of the Earth. While Earth’s local curvature differs
remarkably depending on the location (e.g. the Himalayas versus the Pannonian
Plane), we know that the global shape of the Earth is spherical. However, the
overall comprehensive geometry that would describe the universe on a full-scale
remains an open question and has yet to be found.

It is interesting that the general theory of relativity, which brought revolu-
tionary changes in physics, was established on the grounds of the non-Euclidean
geometry. Einstein admitted that he had issues of expressing his ideas mathemat-
ically, and according to his words, he would not have been able to develop the
general relativity if it had not been for the discoveries in the field of geometry [6,
p. 373|. It is rather fascinating how the question of the Parallel postulate, which
dates back nearly 2000 years, has such a profound impact on contemporary science.
Throughout its long history, the subject of parallels intrigued many mathematicians
and inspired their work, but probably none of them would have ever guessed the
far-reaching consequences of this initially abstract matter. Besides the application
in physics, which we have barely scratched, the non-Euclidean geometry also has a
broad implementation in numerous branches of mathematics. Although it has al-
ready made a large contribution in various areas, the full potential of non-Euclidean
geometry is still far from being exhausted. The fact that it remains to be a topic of
interest to this day proves that non-Euclidean geometry stands alongside Euclidean
geometry as its rightful companion. It is unquestionable that both geometries are
equally worthy, and this was best put into words by Poincaré: “One geometry cannot
be more true than another; it can only be more convenient.” |6, p. 374]
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Summary

Geometry based on the five postulates proposed by Euclid was considered the only
geometry possible for more than two millennia. It remained unchallenged until the
early 19th century, when mathematicians Lobachevsky, Bolyai and Gauss, inde-
pendently discovered that by modifying the Parallel postulate, they were able to
develop an axiomatic system that significantly differed from the FEuclidean geome-
try, but was equally consistent. At the beginning of the thesis, we follow a concise
historical course of events that preceded the revolutionary breakthrough of the hy-
perbolic geometry. Afterwards, we state results unique to this axiomatic system,
which mostly disagree with our intuitive experience. The underlying subject of the
study are parallels, and we classify them according to their characteristics on di-
vergent and asymptotic parallels. Then we introduce the most common models of
hyperbolic geometry, on which we demonstrate the previously proven properties of
two kinds of parallels, and various abstract concepts of hyperbolic geometry. The
following models are observed: the pseudosphere, Beltrami-Klein disk, Poincaré
disk, Poincaré half-plane and hemisphere. Using the hemisphere model, we estab-
lish transformations between the Beltrami-Klein and Poincaré models. Finally, we
briefly discuss the connection of the hyperbolic geometry with the physical world
and its role in Einstien’s theory of general relativity.

Keywords: hyperbolic geometry, Parallel postulate, Saccheri, Lobachevsky, Bolyai,
Gauss, divergent parallels, asymptotic parallels, pseudosphere, Beltrami-Klein disk,
Poincaré disk, Poincaré half-plane, hemisphere
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Sazetak

Geometrija utemeljena na Euklidovih pet postulata smatrala se jedinom moguc¢om
geometrijom dulje od dva tisuélje¢a. Dovedena je u pitanje tek pocetkom 19. stol-
jeca, kada su matematicari Lobachevsky, Bolyai i Gauss, neovisno jedan o drugome,
spoznali da modifikacijom postulata o paralelama mogu razviti aksiomatski sustav
znacajno razli¢it od euklidske geometrije, ali jednako konzistentan. Na pocetku rada
pratimo sazet povijesni tijek dogadaja koji su prethodili revolucionarnom otkriéu
hiperbolne geometrije. Potom navodimo rezultate jedinstvene ovom aksiomatskom
sustavu koji su nerijetko u sukobu s nasim intuitivnim iskustvom. Inicijalni pred-
met proucavanja su paralele i njih klasificiramo prema njihovim karakteristikama
na divergentne i asimptotske. U nastavku konstruiramo najc¢es¢e modele hiperbolne
geometrije na kojima demonstriramo prethodno dokazana svojstva dvaju tipova par-
alela, te ostale apstraktne koncepte hiperbolne geometrije. Promatrani su sljedeci
modeli: pseudokugla, Beltrami-Klein disk, Poincaré disk, Poincaré poluravnina, te
polukugla. Pomoc¢u modela polukugle prikazane su transformacije izmedu Beltrami-
Klein i Poincaré modela. Naposljetku smo se dotaknuli povezanosti hiperbolne ge-
ometrije s fizickim svijetom, te njenom ulogom u Einsteinovoj opc¢oj teoriji rela-

tivnosti.

Kljuéne rijeci: hiperbolna geometrija, postulat o paralelama, Saccheri, Lobachevsky,
Bolyai, Gauss, divergentne paralele, asimptotske paralele, pseudokugla, Beltrami-
Klein disk, Poincaré disk, Poincaré poluravnina, polukugla
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