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1 | Introduction

Superpositions of Ornstein-Uhlenbeck type processes, known as supOU pro-
cesses, belong to the class of stationary processes in continuous time. As the name
suggests, they are obtained as the sums of independent Ornstein-Uhlenbeck type
processes with different parameters, which in the context of continuous-time
processes corresponds to the randomization of the Ornstein-Uhlenbeck type pro-
cess parameter by using the integration with respect to a special type of random
measure. These processes are first introduced in [2] and later generalized to
the multivariate case in [6]. The motivation for their definition was the fact that
the Ornstein-Uhlenbeck type process, despite being a powerful modeling tool,
is not suitable for the case when empirical data show significant dependence
on long time periods. Unlike the Ornstein-Uhlenbeck type process, whose
correlation function decays exponentially fast, the correlation function of the
supOU process can decay more slowly and, in some cases, exhibit the property of
long-range dependence. This provides the possibility of modeling a larger class
of phenomena. Additionally, the advantage of this process is that its marginal
distribution and dependence structure can be modeled independently, providing
greater flexibility in modeling. While the dependence structure depends on
the choice of the probability measure used for randomizing the parameter,
the marginal distribution of the process is determined by the Lévy process
driving the Ornstein-Uhlenbeck type process. These processes have numerous
applications, particularly in finance, where they serve as models for stochastic
volatility. More about volatility models can be found, for example, in [5], [7] and
[24].

In Chapter 2, we define infinite divisibility and the Lévy process as concepts that
form the foundation for constructing the theory of supOU processes. Also, we list
some of their important properties. The connection between them is explained,
and the Lévy-Khintchine formula is presented as the main tool used throughout
the thesis. Selfdecomposable random variables are also defined as an example
of infinitely divisible random variables with useful properties, closely related to
Ornstein-Uhlenbeck type processes.

In Chapter 3, the Ornstein-Uhlenbeck type process is defined, and some of
its basic properties are listed. It is explained that selfdecomposable random

variables appear as the marginal distributions of these processes.

In Chapter 4, the concept of a homogeneous infinitely divisible independently
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scattered random measure, i.e. a Lévy basis, is introduced, along with integration
with respect to such a measure. The integrability conditions are listed, after
which the supOU process is defined. The cumulant functions of the marginal
distributions of the supOU process are calculated, followed by the correlation
function. It is explained when this process achieves the property of long-range
dependence. As an example of a process important in applications, especially as a
model for integrated volatility, the integrated supOU process is briefly presented.

In Chapter 5, all the previously mentioned terms are generalized to the multi-
variate case and the multivariate supOU process is defined. It is shown under
which conditions it is well-defined and when it has finite moments of each order.
Also, expressions for the expectation, variance and covariance of this process are
derived.

Throughout the thesis we consider that all random variables and random pro-
cesses are defined on a fixed probability space (Q}, F, P).



2 | Lévy processes and infinite
divisibility

In this chapter, we will define Lévy processes and terms closely related to them.
We will state some of their important properties and express important results
that demonstrate how such processes are connected to infinite divisibility. These
concepts will be of great importance for defining Ornstein-Uhlenbeck type pro-
cesses, as well as supOU processes.

2.1 Infinite divisibility

Definition 1. We say that an R-valued random variable Y is infinitely divisible (or that
Y has an infinitely divisible distribution) if, for all n € IN, there exists a sequence of i.i.d.

random variables Y(n), e Y,§"> such that

it
n
Y2y v
k=1

Infinitely divisible random variables can be characterised by their characteristic
functions or cumulant functions. This important result is known as the Lévy-
Khintchine formula and it will be useful later on. To express it, we first introduce
concepts of characteristic functions, cumulant functions and Lévy measures.

Definition 2. The characteristic function of a random variable Y (or its distribution) is
the function @y : R — C defined by

ov(0) = B,

The cumulant (generating) function of a random variable Y is the function xy : R — C
defined by

xy(£) = C{{$Y} = logEe*".
(m)

Assuming it exists, the m-th cuamulant of Y, for m € N, is denoted by x,’, and it
satisfies

m g T
] = ()" g (D)o (21)
If ky is analytic around the origin, then
00 Z m e
wr(@) = ) . (22)
m=1 :

3



2.1. INFINITE DIVISIBILITY 4

For a stochastic process Y = {Y(t)} we write xy({,t) = Ky(;)({), and for the

cumulant function of the random variable Y (1) we write ky({) = xy({,1).
Similarly, for the random variable Y (¢), the m-th cumulant is denoted by K&m) (1)
and K§m> = K&m)(l).
Note that 1 i
! R 2 4= o i
y(0) 2(0) (9¥ (D)) oy Q) Py ()
from which it follows that
B, _ 1 / 2 1 " _ 2 3,
Ky’ = —Kyl0) = —— 0))" — —F—=0¢y(0) =EY" — (EY)“ = VarY. (23
4 y(0) 72(0) (¢(0)) (py(O)(PY( ) (EY) (23)

In the previous equality, we use the fact that EX* = l.lkqo(k) (0).

Remark 1. For a random vector Y, the characteristic function gy : R? — C is defined as
py(u) = Ee™"Y and analogously, as in the one-dimensional case, the cumulant function
Ky : R? — C is defined as ky(u) = C{utY} = logEe™'Y. Expressions (2.1) and
(2.2) can also be generalized to the multidimensional case, and similarly to (2.3), it can
be shown that )

KYyyy) = Cov(Yy,Y2) (2.4)
holds for a two-dimensional random vector Y = (Y1, Y2).

Definition 3. We say that y is a Lévy measure defined on R if it is a deterministic Radon
measure' on R \ {0} such that y ({0}) = 0and [, min {1,x?} p(dx) < oo.

The following theorem gives the representation of cumulant functions for in-
finitely divisible random variables.

Theorem 1 (Lévy-Khintchine formula, see [23, Theorem 8.1]). A real-valued ran-
dom variable Y is infinitely divisible if there exists a triplet (a,b, u), wherea € R, b > 0
and y is a Lévy measure defined on R, such that

b :
C{IY} =ial— 30+ / (¢4 1~ ig(x)) p(dx). (2.5)
R
Moreover, the triplet (a,b, ) is unique.
Function 7 in Theorem 1 is the centering function. Typical choice for the centering

function 7 is T(x) = x1|_1 4)(x) or

g i <1,
mx) =« —1, ifx< 1,
i iFz = 1.

Also, we call (a,b, u) in Theorem 1 the characteristic triplet.

1 A Radon measure is a Borel measure on the Hausdorff topological space, that is finite on all
compact sets, outer regular on all Borel sets, and inner regular on open sets. More about Radon
measures can be found in [11], Chapter 7.



2.2. LEVY PROCESSES 5

Remark 2. The converse of this statement holds true. Ifa € R, b > 0 and y is a Lévy
measure defined on R, then there exists an infinitely divisible random variable Y whose
cumulant function is given by (2.5).

The concept of infinite divisibility and the Lévy-Khintchine formula can be gener-
alized to random vectors and stochastic processes. The previous theorem for the
case of random vectors states that a random vector Y is infinitely divisible if there
exists a triplet (a, X, y) such that

: 1 iu'x .
C{uiY}:zuTa—EuTZu+/]Rd (e =1 — iuTx1(Ix]) ) (),

where a € R?, T is a positive semi-definite d x d matrix, and u is a Lévy measure
on IR, i.e. a deterministic Radon measure on R? \ {0} such that u ({0}) = 0 and
Jgamin {1, ||x||*} p(dx) < co. A stochastic process is said to be infinitely divisible
if all of its finite-dimensional distributions are infinitely divisible.

2.2 Lévy processes

Lévy processes form a fundamental class of stochastic processes with wide-
ranging applications. They belong to the class of infinitely divisible stochastic
processes and generalize the concepts of random walks and Brownian motion.

Definition 4. A stochastic process L = {L(t), t > 0} is said to be a Lévy process if
(i) L(0) =0 as.,

(it) L has independent increments, ie. foralln € Nand 0 < t) < t; < --- <
tn, random variables L(ty), L(t1) — L(t9), L(t2) — L(t;), ..., L(tn) — L(t,_1) are
independent,

(iii) L has stationary increments, i.e. for 0 <t <s
L(t)—L(s) L L(t—s),

(iv) L is stochastically continuous, i.e. for all ¢ > 0 and for all s > 0

Lim P(|L(t) — L(s)| > €) =0,

t—s

(v) The paths of L are P-almost surely right-continuous with left limits (cadlag paths).

As we mentioned earlier, Lévy processes are closely related to infinitely divisible
random variables. Let L = {L(t), t > 0} be a Lévy process. For each n € IN and
t > 0 we can write

n

Lit) £ Y\ ),

k=1
where



2.3. SELFDECOMPOSABILITY 6

Y =L <%) L <@> .

Due to the independence and stationarity of the increments, Y,ﬁn) (t) are ii.d. So,
we can conclude that L(t) is an infinitely divisible random variable for each ¢ > 0.
It can be shown that the following statement holds true for Lévy processes.

Proposition 1 (see [1, Theorem 1.3.3]). If L is a Lévy process, then
k() (0) = txL({)

foreach { € R, t > 0, where k. is the cumulant function of L(1).

Since L(t) is an infinitely divisible random variable for each t > 0, we know that
for each t > 0 there exists a corresponding Lévy-Khintchine triplet. The previous
proposition states that we can determine the characteristic triplet of the Lévy pro-
cess at any time ¢t > 0 if we know the characteristic triplet of L(1). Furthermore,
Theorem 2 tells us that for any infinitely divisible random variable Y, there exists

a corresponding Lévy process {L(t), t > 0} such that L(1) 2 Y. These results
are important because they indicate that the law of the process {L(t), t > 0} is
determined by the law of L(1).

Theorem 2 (Lévy-Khintchine formula for Lévy processes, see [18, Theorem 1.6]).
Suppose that a € R, b > 0 and y is a Lévy measure defined on R. For each { € R define

() = iag — 302+ [ (65 =1 ige(®) u(av).

Then there exists a probability space (Q), F, P), on which a Lévy process L is defined, such
that L(1) has the cumulant function xp ({).

Remark 3. We say that L from the previous theorem is a Lévy process generated by Kr,
(or by the infinitely divisible random variable that has the characteristic triplet (a, b, u)).
The cumulant function of the random variable L(1) is often referred to as the cumulant
function of the Lévy process L. Also, it is often said that (a,b, ) is the characteristic
triplet of the Lévy process L.

2.3 Selfdecomposability

Another important concept is the selfdecomposability of the random variable.
Such random variables are closely related to Ornstein-Uhlenbeck type processes
and supOU processes, because they appear as their marginal distributions, as we
will see later.

Definition 5. An infinitely divisible random variable Y (or its distribution) is selfde-
composable if its characteristic function gy ({) = Ee'*Y, { € R, has the property that for
every ¢ € (0,1) there exists a characteristic function . such that

¢y(0) = py(c0)9c(0), VI eR.
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Let Y be a selfdecomposable random variable. Then, Y has the same distribution
ascY + Z.,where Y and Z. are independent, and Z. has the characteristic function
@c, ¢ € (0,1). In this case, Y can be represented as

Y:/O e °dL(s), (2.6)

where L = {L(t), t > 0} is a Lévy process whose law is determined uniquely by
that of Y (see [17], Theorem 3.6.8 and Theorem 3.9.3). The process L is called the
background driving Lévy process (BDLP) corresponding to the infinitely divisible
random variable Y. The cumulant functions of Y and L(1) are related by (see
[17], Remark 3.6.9)

Ky(g) — /OOO KL(e_Sg)dS. (2.7)

Corollary 1 (see [16, Corollary 1]). For a selfedecomposable random variable Y, xy is
differentiable for { # 0, {x!,({) — 0as 0 # { — 0and

kL(8) = iy (D),
where K1, is the cumulant function of the corresponding BDLP.

The BDLP L can be extended to a two-sided Lévy process by putting for t < 0,
L(t) = —L(—t—), where {L(t), t > 0} is an independent copy of the process
{L(t), t > 0} modified to be cadlag.






3 | Ornstein-Uhlenbeck type
processes

In this chapter, we will define Ornstein-Uhlenbeck type processes and state some
of their important properties. These processes are important for defining supOU
processes, which are essentially superpositions of Ornstein-Uhlenbeck type pro-
cesses, as we will see later on.

Definition 6. Let L be a two-sided Lévy process satisfying Elog (1 + |L(1)|) < co and
A > 0. The Ornstein-Uhlenbeck (OU) type process is a process X = {X(t), t € R}
defined by

X(t) = XOD () = M / t

—00

eMdL(As) = /

L e M1, o (t—s)dL(As). (3.1)

The scaling of time in (3.1) ensures that the marginal distributions of the pro-
cess do not depend on A. The change of variables s = As in (3.1) gives a second
representation of X

X(t) = /]R e o (Af —5) dL(s). (32)

Note that the integration is with respect to a two-sided Lévy process. More about
this type of integration can be found in [1], Chapter 4.

It can be shown that X = {X(t), t € R} is strictly stationary (see [23]). Also, we
can write

0 t t
X(8) = e_)‘t/ e dL(As) + e_)‘t/ e’ dL(As) 4 e MX(0) + e‘“/ e dL(As),
- 0 0

with the terms on the right-hand side independent. This shows that stationary
distribution of X = {X(t),t € R} is selfdecomposable distribution which cor-
responds to the BDLP L. That X(0) corresponds to L follows from (2.6). The
converse also holds. The following result indicates that for every selfdecompos-
able distribution, there exists a corresponding Ornstein-Uhlenbeck type process
for which it is the stationary distribution.

Theorem 3 (see [5, Theorem 2.1]). If Y is selfdecomposable, then there exists a sta-

tionary process {X(t),t € R} and a Lévy process {L(t), t > 0} such that X(t) Ly
and

X(t) = [ ) e M9) 4L (As).

9
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An Ornstein-Uhlenbeck type process can also be defined as a stationary solution
of the stochastic differential equation

dX(t) = —AX(t)dt + dL(At), (3.3)

where L is a Lévy process satisfying [Elog (1 + |L(1)|) < coand A > 0. Condition
Elog(1+]|L(1)|) < oo is necessary for the existence of the stationary solution
of the stochastic differential equation (3.3) (see [17], Theorem 3.6.6). For more
details, see [23].

Remark 4. It should be noted that the Ornstein-Uhlenbeck type process differs from
the Ornstein-Uhlenbeck process. The Ornstein-Uhlenbeck process is a special case of an
Ornstein-Uhlenbeck type process when the BDLP is a Brownian motion. More precisely,
it is the solution to the Langevin stochastic differential equation

dX(t) = AMp — X(t)) + 0dB(t),
where B is a Brownian motion, y € Rand A, 0 > 0.

If we assume that X is square integrable, then the autocorrelation function of X is
_ AT
rir)=e", 720,

This follows from the fact that
t+1
X4 1) =g <X(t) + e‘“/ el dL()\s)) .
t

Thus, the autocorrelation function of an OU type process is exponential, which
often does not match the dependence structure exhibited by empirical data,
making it unsuitable for many applications.

OU type process may be seen as a continuos time analog of AR(1) process
(CAR(1) process) since

X(n) =eAend) [*

—00

1 n
e dL(As) 4 e / e’ dL(As)

n—1
n
— e X(n—1) 4 e M / e dL(As),

n—1

and {e=*" [ e dL(As), n € N} is stationary.

n—1



4 | SupOU processes

As previously mentioned, supOU processes are essentially superpositions of
Ornstein-Uhlenbeck type processes, which will be shown to exhibit a more flex-
ible dependence structure. Suppose that {X("L)(t), t € R}, k = 1,...,m are
independent OU type processes with parameters Ay, k = 1...,m and BDLP L.
Then the finite superposition

m
Xn(t) = ) wp XD (¢) (4.1)
k=1
has autocorrelation function
m
r{T)= ) we M, T eR. (4.2)
k=1

By extending the idea in (4.1) to an infinite superposition (m = o), one could
obtain, for example, by putting w; = k—(+2) A = A/k for a, A > 0, that the
autocorrelation function can decay to 0 more slowly than an exponential func-
tion. Alternatively, one can view superposition as averaging over randomized A
according to some probability measure 7. In that sense, we will formally define
the supOU process as

X(t) = /}R ) /]R =1 (£ — 5)dL(s)(dE),

which should be compared with (3.1). In order to give meaning to the previous
integral, we need the concept of a random measure, Lévy basis and the integral
with respect to a random measure.

4.1 Infinitely divisible random measures

Definition 7. Let (S,S) be a measurable space. A collection A = {A(A),A € S} of
random variables on some probability space (Q), F, P) is said to be a random measure on

(S,S) if
(i) A(©) =0 as.,

(ii) for every sequence { A, n € IN} of disjoint sets in S, it holds that
A (U An) =) A(A,) as,
n=1 n=1

.1



4.1. INFINITELY DIVISIBLE RANDOM MEASURES 12

whenever | J;._{ An € S.

We say that the random measure is independently scattered if for every sequence
{An,n € N} of disjoint sets in S, the random variables A(A,), n € N, are indepen-
dent. We say that A is an infinitely divisible random measure, if all finite-dimensional
distributions of A\ are infinitely divisible.

Remark 5. Alternatively, one may take S to be a o-ring of S, i.e. countable unions of sets
in S belong to S and if A and B are sets in S with A C B, then B\A € S (see [22]).

Suppose that A is infinitely divisible independently scattered random measure.
Then, for each A € S, A(A) is an infinitely divisible random variable. From the
Lévy-Khintchine representation, it follows that there exists my(A) € R, my(A) >
0 and a Lévy measure Q4 (-) on R such that

2

CLZEAA)} = igmo(4) — S m(A) + [ (8 —1-ige()) Qaldx).  (43)

Proposition 2 (see [22, Proposition 2.1]). (i) If A is infinitely divisible indepen-
dently scattered random measure, then mg : S — R is a signed measure!, my :
S — [0,00) is a measure and A — Q4 (B) is a measure for every B € B(R \ {0}).

Moreover, there exists a unique o-finite measure Q on S x B(R) such that

Q(AxB)=Qa(B), AcS, BeB[R\I{0}).

(i) If my, my and Q () satisfy the conditions in (i), then there is a unique (in the
sense of finite-dimensional distributions) infinitely divisible independently scattered
random measure such that (4.3) holds.

Proposition 2 tells us that there is a one-to-one correspondence between infinitely
divisible independently scattered random measures and the class of parameters
mg, my and Q. In this case we say that A has the Lévy characteristics (1, m1, Q)
and Q is called the generalized Lévy measure.

For A € § we define
m(A) = |mo| (A)+m1(A)+/]Rmin{1,x2}QA(dx).

The measure m is called the control measure since m(A) = 0 if and only if
A(A’) =0as. forall A’ C A (see [22]). This measure is important for character-
izing the class of deterministic functions that are integrable with respect to the
random measure A.

Another parametrization of the infinitely divisible independently scattered ran-

dom measures may be obtained by defining the local characteristics a(s) = % (s),

LA signed measure generalizes the concept of a measure by allowing it to take on negative
values as well as positive values, while still satisfying the property of c-additivity. More about
signed measures can be found in [11], Chapter 3.
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b(s) = %(s) and by disintegrating measure Q so that Q(ds, dx) = p(s, dx)m(dx),
where p: S x B(R\ {0}) — [0, c0] is a Lévy measure on B(R \ {0}). In this case,
the cumulant function (4.3) may be written as

C{CIAA)} = /A (i@a(s) — %219(5) + /]R (eigx —-1- iCT(x)) p(s,dx)> m(ds).

An infinitely divisible independently scattered random measure A is homogeneous
ifforAeS

my(A) = am(A), m(A) =bm(A)and Q4 (-) = m(A)ur(+),

for some Lévy-Khintchine triplet (a,b, ur). In terms of the local characteristics
A is homogeneous if a(s) = a, b(s) = b and p(s,-) = ur(-). Hence, to define
a homogeneous infinitely divisible independently scattered random measure one
only needs to specify the Lévy-Khintchine triplet and the control measure m. Note
that m and y| are deterministic.

4.2 Integration with respect to a random measure

Let (S, S) be a measurable space and A an infinitely divisible independently scat-
tered random measure with control measure m. The integration of a function on
S with respect to the random measure A can be defined first for real simple func-
tions, then as a limit in probability of such integrals. This type of integral is impor-
tant because, by integrating with respect to a random measure, various infinitely
divisible processes can be obtained, that is, processes whose finite-dimensional
distributions are all infinitely divisible. The conditions for integrability of func-
tions with respect to A can be found in [22]. Only the most important results,
which will be useful later, are stated here.

Definition 8. Let A be an infinitely divisible random measure and f a real simple function
onS, ie. f = ZJ’-’Zl cle]., where cy,...,cn € Rand Aq,..., Ay, € S are disjoint. For
each A € S, the integral of the function f with respect to the random measure A\ is defined
as

[, fan— Y GA(ANA)).
A =

The previous definition discusses the integration of simple functions with respect
to a random measure. The following definition defines the integral with respect
to a random measure for general measurable functions.

Definition 9. A measurable function f : (S,S) — (R, B(R)) is said to be A-integrable
if there exists a sequence { f,, n € IN} of simple functions such that

(i) fn — f a.e. with respect to m,

(if) for every A € S, the sequence { [, fudA, n € IN} converges in probability as
n — 00,
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If f is A-integrable, then

AﬁM:P—E&AﬁWL

where P — li_r>n denotes the limit in probability.

n—oo
Note that [, f, dA in the previous theorem is a random variable for every n €
N, so [, fdA is also a random variable as the limit of random variables. The
following proposition gives the expression for the cumulant function of [ f dA.

Proposition 3 (see [22, Proposition 2.6]). If function f is integrable with respect to
the random measure A, then the cumulant function of the random variable [¢ f dA is

c{et [ ran} = [[micsiw) midw) (44)

where K1, is the cumulant function associated with A.

From (4.4), it follows that if A is homogenous infinitely divisible independently
scattered random measure with the characteristic triplet (a, b, 41 ), than the cumu-
lant function of the random variable A(A) is

C{l1A(A)} = m(A)xL(D),

where 1, is the cumulant function associated with the triplet (a,b, ur), i.e.

2 .
k(@) = iga—Sb+ [ (% —1—igxl () p(d)

In this context, we will refer to the homogeneous infinitely divisible indepen-
dently scattered random measure A as the Lévy basis. Note that to each Lévy basis
A corresponds an associated Lévy process L. This process is referred to as the
underlying Lévy process.

Remark 6. It can be shown that any Lévy process with real values can be understood
as a random measure on the corresponding measurable space (see [20, Theorem 2.1]).
In the following, the case where (S,S) = (R- x R, B(R- x R)) will be particularly
important. In this case, the underlying Lévy process is defined by

L(t) = A(R_ x (0,1]), L(—t) = A(R_ x (=t,0)), t>0,

where A is a Lévy basis on (R_ x R, B(R_ x R)). Another important example is when
A is a Lévy basis on (R, B(R)). Then the underlying Lévy process is defined by (see [6,
Section 2])

Lit) = AL(0:8] ) Lt} = A{{—50)), =0,

This example shows that the integral defining the OU type process (3.1) can be understood
as an integral with respect to a random measure, where the random measure is generated
by the Lévy process.



4.3. DEFINITION 15

It can be shown that the integral of a function with respect to an infinitely divisible
random measure is an infinitely divisible random variable. The following theorem
provides necessary and sufficient conditions for the existence of [, fdA as well as
the explicit expressions for the characteristic triplet of that random variable.

Proposition 4 (see [22, Theorem 2.7]). Let f : S — R be a measurable function, A
infinitely divisible independently scattered random measure with control measure m and

define
U(u,s) = was) + [ (v(xu) —ut(x)) p(s,dx),
V(n,s) = /]Rmin{l,|xu|2}p(s,dx).
Then f is A-integrable if and only if
(i) Js IU(f(s),s) | m(ds) < oo,
(i) f51F(s) |2b m(ds) < oo

(iii) [¢V( s)|m(ds) < oo.

In this case, the characteristic function of [ fdA is given by

Eei¢ Js 1A = exp {zafg_ _C2 +/ léx 1—ilt(x )) yf(dx)} , C€ER,

where

af:/sll(f(s),s)m(ds),
by = [[1£(5)b(s) m(ds),
ue(B) = Q({(s,x) € SxR: f(s)x € B\ {0}}), B e B(R).

4.3 Definition

After introducing all the necessary concepts, we can finally provide a precise def-
inition of the univariate supOU process, which will be generalized to the multi-
variate case in the following chapter.

Definition 10. Let (S,S) = (R- x R,B(R- x R)), (a,b,u) is a Lévy-Khintchine
triplet such that

/ log || #(dx) < oo, (4.5)
|x|>1

and 7t is a probability measure on R _ such that

/]R el (dg) < oo, (4.6)
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Let A be a Lévy basis, i.e. homogeneous infinitely divisible independently scattered random
measure on (R_ x R, B(R_ x R)), with control measure m = 7t x Leband f; : R_ x
R — R given by

fr(&s) = S y(s) = 791y ) (¢ — ).
The infinitely divisible process X = {X(t), t € R} defined by

X(t) = /]R | fE,5) AdE ds). (4.7)

is called a supOU process (a superposition of Ornstein-Uhlenbeck type processes).

The integral is well-defined and the process is strictly stationary (see Theorem 4
below). Using formula (4.4), it can be easily calculated that the cumulant function
of the finite-dimensional distributions of the supOU process (4.7) is given by

C{Cl1,.--,(mt (X(t1),..., X(tm))}
- /}R ) /]R KL (}é%m)(g—s)g]-eﬁff—s)) ds mt(dg), (4.8)
where t; < -+ - < tp.
From (4.8) it follows that
Cigsx®)}y = [ [ ki (Low(t—)5) ds m(de)
- /IR ) /_t w <ge¢<f—5>)ds 7(dE). (4.9)

From the previous expression we can see the stationarity as follows

t+h

cigsxt+mi=[ [ Ce¢<f+h—s>)dsn<dc>

= / / H_hKL (gettt==1) ds (dg)

_/ / KL ge‘-’t ) dur((dg)

=C{ZtX(t)}.
Furthermore, using the substitution {(t —s) = —s in (4.9), we obtain
CL{ZX(t) / &1 72(dE) / kL (Ce~) ds

:p/o KL (ge™®) ds,

where p := [ [¢|7! 7(dZ). From (2.7), we now see that, up to a constant p, this
is the cumulant function of the selfdecomposable random variable with BDLP
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L, i.e. of the corresponding OU type process. Therefore, the one-dimensional
marginal of a supOU process is a selfdecomposable distribution whose character-
istic triplet may be expressed in terms of (4, b, 1) and depends on 77 only through
the factor [ |&|7'7t(d¢). We say that (a,b, u, 77) is the generating quadruple (see
[10]). Note that the generating quadruple determines the law of the supOU
process.

Remark 7. In the first paper where these processes are introduced (see [2]), they are
defined in a slightly different way. Let S = Ry xR, § = B(S) and m = 7@ x Leb be
the product of a probability measure 7T on R and the Lebesgue measure on R. Let k5
be the cumulant function of some selfdecomposable law and (&, b, fiy ) be the characteristic
triplet of the associated BDLP with cumulant function ;. If we define the Lévy basis Aon
R x R with generating quadruple (&,b, iy, 77), then the supOU process {X(t), t € R}
is defined by (see [2, Theorem 3.1])

X(t) = /]R K /_“’ ;esfx(dg,ds) - /]R /R ey (6t —5) A(dE, ds). (4.10)

This definition is different from the one in (4.7). Here A is a Lévy basis associated
with control measure 7T x Leb for any probability measure 7T, not necessarily satisfying
Jr, 18 | 7172(d&) < oo. The two formulas are formally related by the change of variables,
as shown in [10, Proposition 2.1]. In short, by taking @ = pa, b = pb, iy = puL
and 71(d¢) = p & 'n(dg), where p = [ |&|7'7(dE) < oo, we obtain a process
which has the same law as the process X defined in (4.7). Also, (4.7) may be seen as a
randomization of A in (3.1), while (4.10) follows by randomizing A in (3.2).

SupOU processes belong to the class of mixed moving average processes. For a
continuous-time stochastic process { X(t), t € R}, we say that it is a mixed moving
average process if it can be represented as

X(1) = [ f(&t—5) Adg, ds),

where A is an infinitely divisible independently scattered random measure and f
is A-integrable function. For the supOU process (4.7) it holds that

()= [ Fet-s) Az o)

with B )

f(Gu) = e g o) ().
Example 1. Suppose that the probability measure 7w on R_ is degenerate such that
7w ({—A}) =1 for some A > 0. Then we have that

C{gl;;Cmi(X(tl)//X(tm))} — /]RKL (il[olw)(t]._S)Cje—}\(tj—s)> ds,
j=1

If we determine the joint cumulant function of the OU type process (3.1) using relation
(4.8), we can see that the finite-dimensional distributions of the supOU process with this
probability measure are the same as those for the OU type process, up to the factor 1/ A.
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Example 2. Suppose 7t is a discrete probability measure on R such that T ({—Ax}) =
pe, k € Nand Ay > 0. Then condition [ |&|'r(df) < oo is equivalent to p :=

¥ il )\k_lpk < oo and we have that
C{lrswrrlm T E L) vw e X)) }
= Z/ PRKL (i y(t — 8)g; —Ak<ff—5>> ds.

In this case X has the same distribution, up to the factor 1/ p, as the infinite discrete type

superposition
{ Y xMeD(h), t € IR} )
k=1

where { XML (1), t € R}, k € N are independent OU type processes corresponding to
parameter Ay and BDLP L with cumulant function pyxr, k € IN. Note that this corre-
sponds to (4.1) for m = oo

We have seen that the marginal distribution of the supOU process depends on the
probability measure 7t only through the factor p, and below we will see that the
correlation function of the supOU process depends only on the choice of 7z. Thus,
for the supOU process, the marginal distribution and the dependence structure
can be modeled independently. Different combinations of probability measures 7t
and selfdecomposable distributions yield different supOU processes, which have
that exact selfdecomposable distribution as their marginal distribution. For ex-
ample, if we choose —I'(a« +1,1), & > 0 distribution for 77 and a selfdecomposable
distribution such as the Inverse Gaussian, Normal Inverse Gaussian, or any sta-
ble distribution, we obtain different supOU processes with the same correlation
function.

4.4 Dependence structure

As previously mentioned, supOU processes are important because they exhibit
a much more flexible dependence structure compared to, for example, OU type
processes. In some cases, they can exhibit a property of long-range dependence
(also known as the long memory property), which is defined below. Briefly, for a
square-integrable stationary random process, we say it has short-range depen-
dence if its correlation function is integrable, and it has long-range dependence if
it is not integrable. The correlation function of a process with long-range depen-
dence should decay more slowly than exponential. The property of long-range
dependence is important, for example, in time series of financial and economic
data, where the sample autocorrelation function may have high values at large
lags.

To calculate the correlation function of the supOU process (4.7), we use the fact
that the second-order cumulant of a random vector is equal to the covariance be-
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tween its components (see (2.4)). Equality (4.8) for m = 2 gives

C{01, 02§ (X(t1), X(t2))}
B /]R /]R . (1[0,00) (1 = $)51e5 ™) + 1.0 (12 — 5)§2€C(t2_5)> A(dg, ds).

By taking derivatives with respect to {; and {» and letting (1, {» — 0, we obtain

COV( (h1), X(t2))
/ / 1,00 (t1 —5) )ebt=s) 0] B2~ s)et (=) A(dE, ds).

Using relation (2.3) and the fact that due to t; < t; it holds that

10,00y (t1 = 8)L[g,00) (t2 = 5) = Ljg ) (11 — 5),

we obtain
Cov(X(t1), X(t2)) = Var(L / /1000 (y — 8)eE(=)+E(2=9) ds ()
= Var(L / / Gt +t2) =288 do 7r(dF)
:—%Var / E1eb(Hh) =26t 1 (g7)

:—%Var / E e =) (dp).

Furthermore, since the process is stationary, we have that Cov(X(t;), X(t;)) =
Cov(X(0), X(tp —t1)) and for T > 0 we can write

Cov(X(0), X(1)) = —%Var / e 168 72(dE) (4.11)
Also, it holds that
Var(X(1)) = Var(X(0)) = —%Var / Elr(de) = P Var( (1)), (4.12)

where p = [ ||~ 7t(d¢). Finally, we obtain the autocorrelation function of the
supOU process (4.7)

r(T) = ffﬂfé i — dg . —1/ i1 (4.13)

Therefore, the dependence structure depends only on the choice of the probability
measure 77, and not on the characteristic triplet (a,b, ). This implies that the
existence of the long-range dependence property also depends on the choice of
the measure 7.
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Example 3. If we reconsider the degenerate case when 7t is a measure on R_ such that
7t ({—A}) =1 forsome A > 0, as in Example 1, it follows from relation (4.13) that
_1)\_1€_AT — e—AT,

r(t)=p

since p = A~ due to the degeneracy. We can see that this is exactly the correlation
function of an OU type process.

Example 4. From (4.13) the correlation function of the process from Example 2 is given
by

(0]

r(t)=p Y A te NTp, T >0,
k=1

which corresponds to (4.2).

To define the long-range dependence property, we first need the concept of a
slowly varying function at infinity. Also, we will use the notation f ~ g if
f(x)/g(x) - 1lasx — 0orx — oo.

Definition 11. We say that function ¢ is slowly varying at infinity if for every x > 0

.. B(xt)
ey

=1

Definition 12. A stationary process with correlation function r exhibits long-range de-
pendence, if there exists « € (0,1) and a slowly varying function ¢, such that

r(t) ~L(t)T™ %, forT — 0.

It can be observed that the property of long-range dependence implies that
Jo r(T)dt = oco. The following proposition indicates that the probability mea-
sure 7T needs to have a sufficiently large mass around the origin. The larger this
mass is near the origin, the slower is the decay of the correlation function at infin-

ity.
Proposition 5 (see [10, Proposition 2.6]). Suppose X is a square integrable supOU
process with correlation function r, £ is a slowly varying function at infinity and a > 0.
If
7 ((0,%]) ~ p(a+1)"%(x H)x**™, asx =0, (4.14)
then
r(t) ~T(a)l(t)T™", asT — oo. (4.15)

The converse holds true if 7t is absolutely continuous with density 7', and x 17’ (x) is
monotone on (0, xq) for some xy > 0.

The previous result follows from Karamata’s Tauberian theorem (see [9, The-
orem 1.7.1']). From (4.15), it can be observed that if « € (0,1), the correlation
function is not integrable. In that case, the supOU process exhibits long-range
dependence. Otherwise, for a > 1, it exhibits short-range dependence.
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Example 5. Suppose X is a supOU process such that 1t is —T (« + 1, 1) distribution with

density
£ = Ty (9 L)

where o > 0. It can be shown that 7t satisfies (4.14). We have
=1 1 o6
p= /|¢| ndg) = - [ & (0 e

/ T(a) alegdg__

where the last integral is equal to 1 due to the fact that f(x) = ﬁ (—x)* ¥ _q 0y()

is the probability density function of the —T'(«, 1) distribution. From relation (4.13), we
can explicitly compute that

= = CT L & ;6
0) =7 [ EE ) = [ T (0 &

=/ W(—C)‘Heé T dg = (x4+1)

The last equality follows from the fact that f(x) = (?(r;))a (—x)* et Dx1 _ g (x) is
the probability density function of the —I'(a, T + 1) distribution. We can see that the

correlation function has the property

r(t) ~1 % asT — oo,
Therefore, we can conclude that for w € (0, 1], the correlation function exhibits the prop-
erty of long-range dependence, while for & > 1, it does not.

Other examples of different correlation functions of the supOU processes can be
found in [4].

4.5 Integrated processes

In this subsection, we introduce integrated supOU processes. They are another
important example of processes that find application in mathematical finance,
where they serve as models for integrated volatility. For these processes, explicit
expressions for the cumulant function and cumulants can be derived.

Let {X(t), t € R} be a supOU process defined in (4.7). The integrated supOU
process { X*(t), t € R} is defined as

() = /OtX(u)du.

The following lemma is important to show that the integrated process is well-
defined. To prove the lemma, the stochastic Fubini theorem is needed (see [3,
Theorem 3.1]).
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Lemma 1 (see [14, Lemma 4.1]). For the integrated supOU process X* one has
t
X*(t) = ,s)A(dg,ds) | d
(0 /0 (o foleo) A ds)) du
)du | A(d¢,ds),
[ ([ s ) Atde ), o
where f,(,s) = et~ S)1 ool — &}
Using the previous lemma, we have
X0 = [ F(&s) A, ds)
- xR
where
; . fo ¢S (u s <0,
B, 5) = / fu(g,s)du = / 65(”_5)1[01w)(u —s)du = fS eS(t= )du 0<£s<E,
0 0
0, s >t,

E1(e8(t=5) —=85), s <0,
= &gt 1, 0<s<t,
0, s > t.

Note that we can write

Ff(gfs) :g(g,t—s) —g(é,—s),

—1(,Cu
g((f,u):{é (" —1), u>0,

0, u <0.

with

This shows that X is stationary increment mixed moving average (SIMMA) process.

More information about SIMMA processes can be found in [8].

Now, let X be a supOU process and X* the corresponding integrated process. To
ensure the existence of all cumulants of the marginal distribution of the underly-
ing supOU process, the cumulant function xx needs to be analytic. The following

lemma provides a criterion for checking analyticity.

Lemma 2 (see [19, Theorem 7.2.1]). The characteristic and cumulant functions are
analytic in a neighborhood of the origin if and only if there is a constant C such that the

corresponding distribution function F satisfies
1—F(x)+F(—x)=0(e ™), asx— oo,

forall0 <u < C.
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Lemma 2 implies that the cumulant function of X(#) is analytic in the neighbor-
hood of the origin if there exists 2 > 0 such that

Eealx(t)| < 00,

This implies that all the moments and cumulants of X(t) exist (see [12]). It is
also important to note that the analyticity of the cumulant function does not
depend on the probability measure 71, because the one-dimensional marginal
distributions are independent of the choice of 7.

The following two propositions are expressed in terms of 77, which corresponds to
the alternative parametrization of the process X, as described in Remark 7. They
provide the expressions for the cumulant function and the cumulants of the inte-
grated process. Firstly, for a,b € R, let

e(a,b) = % (1 — e_“b> :

Proposition 6 (see [2, Theorem 4.1]). The cumulant function kx- of X*(t) satisfies

oo pt
k@0 =¢ [ [ wle(s,6)0) ds (),
where k% ({) is the cumulant function of X(1).

Proposition 7 (see [2, Theorem 4.2]). Assume that the cumulant function x of X(1)
is analytic in a neighborhood of the origin. The cumulants of X*(t) are then given by

K (1) = kL (1),

where the K%m) are the cumulants of X (1),

)= [ (m e ':21(—1)"—1 (") %e-’“‘?> £ A (dE)

with )
- m—1\1
A1 = (—1)k< >—.
i k:Zl k k

Example 6 (see [12, Example 6]). Assume that X is a supOU process whose marginal
distribution is IG(J,y), that is the distribution over [0, c0) with probability density func-
tion

flx) = %e‘”x‘w2 exp {—% (5236_1 + ’sz) } , 0<x <o,
V21

where § > 0iy > 0. Since exponential moments for this distribution are finite, the
cumulant function is analytic around the origin and takes the form

kz(0) =0 <’r — 89 — 2i€> :
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There are also examples of selfdecomposable distributions for which the cu-
mulant function is not analytic around the origin. For instance, the Student’s
t-distribution T(v,d, i), v,6 > 0,1 € R, satisfies E|X|7 = oo for g > v, making it
an example of such a distribution. For distributions like these, where moments
exist only up to a certain order, expressions for the cumulants can still be derived.

It can be shown that this process may exhibit the intermittency property, which
indicates that the moments of the process do not have typical limiting behavior
and is often used to describe models that achieve a high degree of variability. More
about this can be found in [12], [13] and [14].



5 | Multivariate supOU processes

In this chapter, we introduce multivariate supOU processes and provide condi-
tions for their existence as well as the finiteness of moments. We will explicitly
express second-order moments and provide examples of processes that exhibit
long-range dependence. Multivariate supOU processes are important for appli-
cations because it is often necessary to model several related time series. They
are obtained as a superposition of independent multivariate OU type processes,
which are solutions to stochastic differential equations of the form

dX(t) = AX(t)dt + dL(t),

where L is a d-dimensional Lévy process and A is a d x d matrix.

First, it is necessary to introduce some notations. We denote the set of all real
m x n matrices by My,,(R) and if m = n we write M,,(R). I, denotes the n x n
identity matrix. The group of invertible n x n matrices is denoted by GL,(R),
S, is the linear subspace of symmetric matrices, S, is the (closed) positive
semi-definite cone and S;* is the open positive definite cone. Similarly, S;, ~
denotes the set of the negative definite matrices. The spectrum of a matrix A
is denoted by ¢(A). AT is the transpose of a matrix A and a;j is the element of
matrix A in the i-th row and j-th column.

To define multivariate supOU processes, it is necessary to generalize the concept
of a Lévy basis as well as the integration with respect to a random measure. Let
M, = {X € My(R): ¢(X) C (—00,0) + iR}, that is the set of all d-dimensional
matrices whose eigenvalues have a strictly negative real part, and let B, (M, x
R) to be the bounded Borel sets of M; x R. In the multivariate case, we define
the Lévy basis A as a homogeneous infinitely divisible independently scattered
random measure on (M, x R, B,(M; x R)). Note that in this case, A(A) for

A € By(M; x R)) is a R%-valued random vector. Similar to the one-dimensional
case, for the Lévy basis we have

C{uiA(A)} =T1(A)xr(u), (B.1)
forallu € R?and A € By(M; x R)). The measure ITis the product of a probabil-

ity measure 77 on M, and the Lebesgue measure on R. Also, «r is the cumulant

transform of an infinitely divisible distribution on R? with characteristic triplet
(a,%,u), thatis

: 1 iu”x :
xp(u) = iula — EuTZu—k /]Rd (e L. zuTxl[Oll](||x||)) p(dx),

25
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wherea € R%, % € ST and y is a Lévy measure on IR. So, the generating quadru-
ple of the Levy basis is (a, X, u, 7). The corresponding underlying Lévy process
with the characteristic triplet (a, %, ) and cumulant function x| is defined by

L(t)=A(M; x(0,]), L(—t)=A(M; x(—t0)), t>0.

Integration with respect to a random measure can be easily generalized to the
multivariate case. The integral with respect to a random measure is defined anal-
ogously to the one-dimensional case, first for simple functions, and then as the
limit in probability of such integrals of simple functions. Similarly to the one-
dimensional case, since A(A) is an R%-valued random vector for A € B,(M; x

R)), the integrals of simple functions are also R%-valued random vectors, and
hence the integral of a general measurable function, as a limit of R?-valued ran-
dom vectors, is also an R%-valued random vector. The following proposition is a
generalization of Proposition 4.

Proposition 8 (see [6, Proposition 2.3]). Let A be an R%-valued Lévy basis on
M, x R with cumulant function of the form (5.1) and f : M; xR — My(R) a
B (M; x R) — B (M4(R)) measurable function. Then f is A-integrable if and only if

f Jlscasa

+ [ FAs)x (Lo (LF(As)xI) = Loy (IxI)) pd0)ll ds 7(d4) < oo,
[, Jasms s ds i) < o
/Md /IR/W (1A 1£(A,5)xI2) p(dx) ds (dA) < oo.

If f is A-integrable, the distribution of | M Jr, f(A,s)A(dA,ds) is infinitely divisible
with characteristic function

E (exp (iuT /Md /]R f(A5) A(dA, ds)))
= exp </Md /IR+ KL (f(A,s)Tu> ds n(dA))

and characteristic triplet (int, Lint, int) given by

s = /Md /}R (F(A,s)a
+ /Rdf(A,S)X(l[o,u(||f(A,S)X||) — Loy ([Ix])) u(dx)) ds (dA),

S — /Md /]R F(A,)ZF(A,s)T ds (dA),

Hine(B) = /M /}R /]R 15(f(A,$)x) p(dx) ds m(dA), VB € B(RY).
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Remark 8. Note that in the integrals above, both the integrands and the integrators
are matrix (or vector) valued. In short, if we consider {A(t), t > 0} in My (R)
and {B(t), t > 0} in My;(R) as cadlag and adapted processes, and {L(t), t > 0}
in Mup(R) as a Lévy process, then with fOtA(s—)dL(s)B(s—) we denote a ma-
trix C(t) in Myy(IR) such that its element in the i-th row and j-th column is
el = 5 X0 4 fot ak(s—)byj(s—)dLy(s). More about this type of integration can
be found in [21], Chapters 2 and 3.

In the following, the case when f(A,s) = ¢/ will be particularly important. For
A € M, (R), the matrix exponential function e”* is defined using the Taylor series
expansion as follows
As _ oo (As)
e =Y 7

k=0

Note that e is again a matrix. It can be shown that £e4* = Ae”*, which will
also be useful later.

In general, a matrix function can be defined using the Jordan decomposition of
a matrix, which can be understood as a generalization of a matrix diagonaliza-
tion. Recall that any matrix A € M, (C) can be uniquely expressed in the form
A = PJP7!, where P is a regular matrix and J is a Jordan matrix, i.e. a block-
diagonal matrix with Jordan blocks on its diagonal. Each Jordan block is an upper
triangular matrix with the same scalar on the main diagonal, it has entries 1 above
the main diagonal, and it can be decomposed into the sum of a diagonal matrix
and a nilpotent matrix, that is, a matrix for which N k = 0, where k is the dimen-
sion of the Jordan block. The matrix function is then defined as f (A) = Pf(J)P~},
so e/ can be defined as e = Pe/SP~1. More details about Jordan matrices and
Jordan decomposition can be found in [15], Chapter 3.

5.1 Definition

The following theorem provides the definition of a multivariate supOU process,
as well as sufficient conditions that ensure its existence.

Theorem 4 (see [6, Theorem 3.1]). Let A be an R%-valued Lévy basis on M; xR
with generating quadruple (a,X, y, 1) satisfying

o 18I (@) < oo (52)

and assume there exist measurable functions p : M; — Ry \{0} and 17 : M; — [1,00)
such that
eS| < n(A)e A4S, Vs e Ry, m-as., (5.3)

and
AR (5.4)
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A d-dimensional supOU process X = {X(t), t € R} given by

/Md /_ A(dA, ds) (5.5)

is well-defined for all t € R and stationary. The distribution of X(t) is infinitely divisible
with characteristic triplet (ax, Zx, x) given by

ax= [ o (e [ (1o (1) ~ 10 p(e) ) dsm(da),

T = / / eA55eA™S ds n(dA),
- Jr,

1 u(dx)d dA
/Md /JR+ R4 B e

for all Borel sets B C RY.

Proof. It follows from Proposition 8 that the necessary and sufficient conditions
for the existence of integral are

S Je @t fowe (oo = 1o () ()| ds () < oo

d (5.6)
// eAsyeA’s|| ds m(dA) < oo, (5.7)
M7 JR,

fo S o (A1) g o) < oo (58)

We will first show that (5.8) holds. From condition (5.3), it follows that

/Md /IR+ /IRd (1 A HeASxHZ) u(dx)ds t(dA)
< /Md /]R+ /]Rd (1 /\77(A)2e—ZP(A)S||x||2> u(dx)ds m(dA).

We can calculate the last integral by splitting it into two cases, depending on
whether the condition
n(A)%e x| > 1 (5.9)

or
n(A)?e A% x|? < 1 (5.10)

holds.

Since e~2°(4)s < 1, condition (5.9) can only hold if 77(A)?||x||> > 1, that is ||x|| >
1/1(A), with an additional constraint on s. We have

log (17(A)[Ix]})
o(4)

n(A)%e ~Zala ||x||2 >1 < s<
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Condition (5.10) can hold for both 77(A)?||x||> < 1 and 1(A)?||x||> > 1. In the
first case, i.e. for ||x|| < 1/57(A), (5.10) holds for every s € R. In the second

case, i.e. for ||x|| > 1/1(A), (5.10) holds when s > 71%(2((?))”"”).

We obtain

/ /]R+ /]Rd 1An(A )S||XH2> i(dx) ds m(dA)

log(17(A)|x][) H 1)

_/ / " / pu(dx) ds t(dA)
M Ixll>1/1(4)
+/Md /]R+ /‘x|<1/7] a0 (U(A)ze_2P(A)S||X”2> 1(dx) ds 7(dA)
+/ % A1) /|x|>1/17( ><77(A)2e—29(A)S||x|‘2> p(dx)ds t(dA)
/Md /X|>1/17 < (( ))Hx“) p(dx) mt(dA)
/Md /|X||<1/;7 ?p) H))(H pldx) m(dA)
* /Md /|x||>1/,7 T u(dx) m(dA)
B /Md /|x||>1/;7 log ( p)(HXI)') t1/2 ]/l(dx) ﬂ(dA)

/ /|x||<1/,7 2p H))(” p(dx) (dA),

where equality (x) follows from

1
e (A gg =~
/]R+ 20(A)

and

+co 1
—20(A)s o
/logm"x") e e A (APIN

The finiteness of the second integral in the last expression follows from (5.4),
7(A) > 1, and the fact that u is a Lévy measure, so it satisfies

/HXI§1 [ e (dx) < 0.
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To ensure the finiteness of the first integral, we have

log(17(A)|[x|]) +1/2
/M.;z /X|>1/17 o(A) p(dx) t(dA)

B /Md /x|>1 log H;x(')l) e el

log(n(A)|Ix|) +1/2 .
+/Md /1/77(A)<|x|§1 0(A) p(dx) mt(dA)

log(17(A)) +log(||x]|) +1/2
: /Md /x|>1 p(A) Hldx) m(dA)

/Md /|x|<1 JXHZ p(dx) mt(dA)
_ [ log(n(4)) )
_ n(dA) /| o M)

My p(A)
n(A)? 12 sl
+ [ piay @A) [ IR )

1
+ [ —emm(da) [ (og(lIxl) +1/2) p(d),
o) [, Ges(lxl) +1/2) p(a)
so the finiteness follows from (5.2), (5.4), 7(A) > 1 and y being a Lévy measure.

Using (5.4), condition (5.7) follows from

e

AszeATs

ds (dA) < ||Z| /M /JR 1(A)2e~200A) ds 7r(dA)
d +

_ 1(A)°
==, 30085

To show (5.6) we first have

/Md /1R+ 6A5a+/ Lo (le”*x]) _1[0,1}(||XH)> u(dx)|| dsm(dA)
< /Md /]R+ |e%al| ds m(dA)
* /Md /1R+ /]Rd e (1[0,1] <||€ASX||> - 1[0,1](||X||)> pu(dx)|| ds(dA)

Again by using condition (5.4), the finiteness of the first integral in the previous
expression follows from

/Md /]R+ le**a|| ds r(dA) < ||a||/ / U(A)e—pm)sds (dA)
= lal f, 25 @A) <o
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The finiteness of the second integral follows from

D e e Ctom (lex) = g (1) e
< As
- /Md /R+ /|x|31,[|eASx|zl le™ x| #(dx) ds m(dA)
s /| L L
d & x| =1, |[eX]|| <
As 112
S /Md /]RJr /|X|§1,HEASX|21 He X|| y(dx) dS ﬂ(dA)
T /M /]R /1<| H< 0(A)s/2 ||x||;7(A)e_p(A)S ‘u(dX) ds ﬂ(dA)
d A S| X e
" /Md /]R+ /|XHZEP(A)S/2 ],l(dx) ds ﬂ(dA)
A 21(A)
= “u(d i dA
< e PR 2y 00+ )

2
oy @A) [ Tos(x) ),

d

ds t(dA)

7(dA) /” o M)

by using (5.2), (5.4) and the fact that u is a Lévy measure. After establishing
well-definedness, stationarity is evident. The fact that the distribution of X(¢) is
infinitely divisible with characteristic triplet (ax, Xx, #x) follows from Proposition
8. O

The conditions (5.6), (5.7), and (5.8) from the proof of Theorem 4 are necessary
and sufficient for the existence of the integral, but as they are difficult to verify,
we replace them by the sufficient conditions (5.2), (5.3) and (5.4) from Theorem
4. For practical applications, it is important to understand how close these
sufficient conditions are to being necessary, as discussed in Proposition 3.3 in [6].
Also, it should be noted that the conditions (5.2), (5.3) and (5.4) do not require
integration with respect to both u and 7, but only with respect to one of them,
which is not the case with the mentioned necessary and sufficient conditions.

This definition is consistent with the definition of the univariate supOU process
introduced in Chapter 4. Specifically, for d = 1, we have M; = R_, condition
(5.2) is equivalent to condition (4.5), and for #(¢) = land p(¢) = —¢, ¢ € R_,
condition (5.4) corresponds exactly to (4.6). In this case, condition (5.3) is
trivially satisfied.

Example 7 illustrates how x and p can be specified in a measurable way, and Ex-
ample 8 is a generalization of Example 5. It defines a supOU process for which
we will later explicitly calculate second-order moments.
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Example 7 (see [6, Example 3.5]). Let

2, = {X € My(R) : X is diagonal; all diagonal elements are strictly negative,
pairwise distinct and ordered such that x; < xj;, V1 <i <j < d},
Sy ={X € GL4(R) : the first nonzero element in each column is 1},
My ={SDS7':5e€ #,Dec g}

For a matrix A = SDS™! € .4, the matrix D is such that its diagonal elements are the
eigenvalues of A, and the matrix S is such that its columns are the eigenvectors of A. In
general, such a matrix decomposition is not unique, but it can be shown to be unique for
S € ,D € 2. We have that e = SeP5S™1, from which it follows that

le?*l < Isllle™ NS,

so if we choose constants k = ||S||||S7!|| and p = — max(R(c(A))), where R(c(A))
denotes the set of all real parts of the eigenvalues of A, we obtain

eS| < xeP5.
Due to the uniqueness of the decomposition, the continuous mapping defined by
M: S x Dy — M;, (S,D)— SDS™!

is a bijection. Let’s denote the inverse mapping by M~ = (&,D). All of these map-
pings are measurable because the procedures used to compute the matrices S and D are
measurable. If we define

KMy — [1,00), k(A) = [|6(A)|II(S(A) ]

and

p: My — R\{0}, p(A) = —max(R(c(A))),

we can conclude that they are also measurable mappings on .4 and that the following
holds
e < ()P,

Using the x and p defined in this way, we can define the probability measure 1t on A,
check whether the condition (5.4) holds, and thus define the supOU process.

Example 8. Let A be a d-dimensional Lévy basis on M; X R with generating quadruple
(a,%, u, i) satisfying

log([[x]|) u(dx) < co.

[x[|>1

Let R be a random variable with T' (., B) distribution such that « > 1and B > 0, meaning
R has the density

flx) = %xa-le—ﬁmom)<x>,
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and let B be a diagonalizable matrix in M, . Define the probability measure 7t as the
distribution of RB. It can be shown that the measure 7t defined in this way satisfies the
conditions of Theorem 4, and that the process defined by

/ / A(dA, ds)

exists and is stationary (see [6, Example 3.1]).

5.2 Moments

In this section, we will show under which conditions the supOU process has a
finite r-th moment for » € (0, c0) and provide expressions for [E(X(0)), Var(X(0))
and Cov(X(h), X(0)), i.e. the second-order moment structure.

Theorem 5 (see [6, Theorem 3.9]). Let X be a stationary d-dimensional supOU process
driven by a Lévy basis A satisfying the conditions (5.2), (5.3) and (5.4). It holds that

(i) ifr € (0,2] and
[ Il () < oo,
x| >1
then X has a finite r-th moment, that is E(|| X (t)]|") < oo
(ii) ifr € (2,00) and

/”x”1|!><||u / ’7 dA) < oo,

then X has a finite r-th moment, that is E(||X(t)]|") < oo

Proof. Corollary 25.8 in [23] implies that it is sufficient to show

| I px(@x) < oo,
[x[[>1

We have
Jgon ety = [ eIy (1) ) ds ()
< /Md Jo o 1A N ((A)e AP ) () ds ()
o L b e A ds ) )
- /Md /HXH>1/77( >% (1 N m> Hldx) m(d4)

_ n(A)[x[|" -1
- /Md /HXH>1/77(A) ro(A) p(dx) t(dA),
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where the first equality follows from the expression for yux in Theorem 4. The
finiteness of the expression

1
/Md /HXH>1/7](A) 1’()(714) "l/l(dx) ﬂ(dA)

follows from the proof of Theorem 4, so it remains to show that

/Md /|x”>w /ll)xH’ 1(dx) T(dA)

is finite, which follows from

/M /x||>1/;7 AH)XHr u(dx) (dA)

/ /|x||>1 A|X||r plex) el dA) +/ /|x||<1 W(A);\(/AH)XHN A ()

Using condition (5.4) and the fact that u is a Lévy measure, (i) and (ii) follow. [

Theorem 6 (see [6, Theorem 3.11]). Let X be a stationary d-dimensional supOU. pro-
cess driven by a Lévy basis A satisfying the conditions (5.2), (5.3) and (5.4). Assume

additionally that [ ||x||*p(dx) < co. Then E(||Xo|*) < oo and
E (X(0)) = — /M Al (a+ /n X y(dx)) 7(dA), (5.11)
Var (X(0)) = (7 (A))7! (Z + /IRd xxTy(dx)) n(dA), (512}

-
Cov (X(1),X(0)) = — /M AT (o7 (A)) ! <z+ /]R d xxTy(dx)) w(dA), (5.13)

for T € R+ and o/(A) : My(R) — My(R), X 15"

AX + XAT,
Moreover, it holds that

Tll_I>1’1 Cov (X(1),X(0)) = 0. (5.14)
Proof. Theorem 5 implies the finiteness of the second moments. Example 25.12
in [23] states that for every Lévy process {L(t),t > 0} in R? with characteristic
triplet (a, X, u#), it holds that

E(L(t)) = ¢ (a+/”x||>1x],t(dx)). (5.15)

Since X(0) is an infinitely divisible random vector with characteristic triplet
(ax, Xx, yx), from the previous expression it follows that

E(X(0)) =E(L(1)) = ax + x px (dx),

[ >1
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where {L;(t), t > 0} is the corresponding d-dimesional Lévy process such that

X(0) 4 L1(1). Now, using the expressions for ax and yx from Theorem 4, we

obtain
0)) :/Md /IR+ ¢4 (a+/|x|>1xy(dx)) ds (dA).

Note that e4* = 4 A~1¢45, By substituting this expression into the above integral
and integrating with respect to s, we obtain (5.11).

In a similar way, using Example 25.12 in [23], we obtain
Var (X(0)) = Xx —i—/d xxT pux (dx)
R
- ASZ/Td)ATSd dA
/Md/]li+e ( + . u(dx) ) e smt(dA)
Now, by integrating over s, we obtain (5.12).

Furthermore, it holds

Cov (X(1), X Cov( " /w A(dA, ds) /M /000 =45 A(dA, ds))

— Cov (/Md /Ooo A(dA, ds) /M /000 e~ A(dA, ds))
_ MdeAT(/_OOO (z+/ xx ptdx)e Sds) dA)
_ _/ deAT(Jz{(A))_l (z:+/w xxTy(dx)) (dA),

where the second equality follows from the fact that A is a Lévy basis, so the
random measures A on M, x (0, 7] and on M, x (—oo,0] are independent.

To show that (5.14) holds, observe that

0
gai (/_Oo g4 (Z Ha /]Rd xxTy(dx)> e_ATsds> H

0

< U(A)ZeP(A)(ZS—T) ds ||z + / ) XXT“u(dX)
17( )’ /
20(4) Y+ [ xxTu(dx)|| < oo,
Since lim;_,o, 47 = 0 for all A € M, by the dominated convergence theorem,
the statement follows. O

Note that the expression a + foH>1 x (dx) in (5.11) corresponds to the expecta-

tion of the underlying Lévy process L, which follows from (5.15). For d = 1, we
have

E(X(0) = ~E(L(D) [ &'7(dg) = pE(L(D).
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In the one-dimensional case, for the mapping </ (A) : My(R) — My(R), X 44

AX + XAT, the corresponding mapping is defined by «7(¢) : R_ — R_, x 7

=
2x¢, and the inverse mapping is given by x %»—gg) % Also, the expression
¥ 4 [gaxxT p(dx) in (5.12) corresponds to the variance of the underlying Lévy
process, so we obtain

Var (L(1))
2¢

which corresponds to (4.12). Similarly, for the covariance, we obtain

COV(X(T),X(O)):_/eCT%E(l)) (dE) = Var(L / .

Var (X(0)) = — | m(dg) = & var (1(1)),

which corresponds to (4.11).

Property (5.14) is not obvious and requires a detailed proof because, even in the
multivariate case, expression (5.13) does not show that the covariance function
always decays exponentially. It is also possible for the multivariate supOU pro-
cesses to exhibit long-range dependence. By long-range dependence in this con-
text, we mean that at least one element of the covariance function asymptotically
behaves like 7%, where T — oo and a € (0,1).

Example 9. Assume that A and 7t are defined as in Example 8, and additionally, suppose

that
2
[ IXIPa(dx) < oo

holds, which ensures the existence of second-order moments. We have

E (X(0)) = —/ dA_l <a+/|x||>1x],t(dx)) T(dA)
— —/]R+(B1f)_1 (a+ |x|>1xy(dx)) %r“‘le_ﬁr dr
— _F[?zx) /]R+ e Prr*—2dr 1 <a+ ”x”>1x;4(dx))
- _F[?Z)F(“ LpTET (H |x|>1xy(dx))

= _%B_l (a—l—/”x“>1xy(dx)) ,

where we use the fact that [;° r* e P dr =T (a)p~* and T(x + 1) = al'(«).
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Similarly, for the variance we obtain

Var (X(0)) = —/Md (A (A) ! <z+/w xxTy(dx)) T(dA)

= —/R+ (o (Br)) ™" (Z%—/Rd xxTy(dx)) %r“‘le_ﬁr dr

e
_ _“61%‘1 <Z+/RdxxTy(dX)>,

where B : My(R) — My(R), X % BX + XBT.

From (5.13) it follows that
Cov (X(1),X(0)) = — /M AT (o7 (A)) ! (z n /]R o y(dx)) (dA)

= /]R+ eP"7 (o7 (Br)) ™ (Z+ /]Rd xprt(dx)> %r"‘_le_ﬁrdr

— _rl?:) /]R ) pBro—flarye—2 gy (@-1 <z+ /]R ) xxTy(dx)>> :

Since B is assumed to be diagonalizable, we know that there exists a matrix U € GLy4(C)
and scalars Ay, Ay, ..., Ag € (—0c0,0) + iR such that

A Al ses W]
—— )\'2 o
0 0 --- Ay

Using the previous conclusion and the fact that [~ r*Le=* dr = T'(z)k~% also holds for
all z,k € (0,00) + iR, we obtain

/ eBrT—Blar,a—27, / e—r(ﬁId—Br)rlx—Zd},
R+

Ry
By @ -~ @
B Ay === O o »
:LI/ exp| —FlBLh—|. . . N < dr U
R, - T
B 0 wws g
A 0 oo 0 l-=
i Az - B »
=Ta-DU|pL—-|. . . .|T u
0 0 - Ay

=T(a—1)(Bl; — BT)' ™™
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Thus, we have

Cov (X(1), X(0)) = —F[z:)r(a _1)(Bl; — Br)' ! (z [ o y(dx))

— _a'[fl(ﬁld — Br) @t (Z + /Rd xxTy(dx)) :

We can see that the covariance function decays polynomially, and for & € (1,2), the
property of long-range dependence is achieved.

Example 10 (see [6, Example 3.2]). The previous example can be generalized to the
case when 7t is defined as 7w = Y " | w;Tt;, where wy, ..., wy € [0,1] with }" ; w; =1,
and fori € {1,...,m} probability measure 71; is defined as the distribution of R;B;, where
R; ~ I'(a;, Bi), a; > 1, B; > 0and By, ..., By, are diagonalizable matrices in M . In

this case, we get
Wifi p— / >
a+ dax) |,
imai—1 b < ”x”>1xy( )

Var (X(0)) = éoz)i—ﬁil z " <Z—|— /Rd xle/i(dx)> /
z,Bal

M§

E (X(0)) =

3

Cov (X(1), X(0)) = (Bl — B <z+ [ dx)>
i:1
where %; : Ma(R) — Ma(R), X 2 B;X + XBT.

Example 11 (see [6, Example 3.4]). Let D, ™ be the set of all 2 x 2 diagonal matrices
with negative entries on the main diagonal and let A be a two-dimensional Lévy basis on
D; ~ x R with generating quadruple (a,%, u, 1) satisfying

[l () < o0

Note that ID, ~ can be identified with (R™~)?, where R~ is the set of all negative real
numbers (excluding 0). Let probability measure 7w on 1D, ~ be given by

Lol
7T (drlldrz) = % (_rl)oq—l (_rz)az—l 6[3171+ﬁ21’2 I(JR**)Z (rler) d?’l dry,

where aq,0y > 1 and B1,B2 > 0. We can observe that the diagonal elements are
independent, and their absolute values follow gamma distributions. It can be shown that
the conditions of Theorem 4 are satisfied, and that the stationary stochastic process de-
fined by (5.5) with the given probability measure 7t is well-defined (see [ 6, Example 3.4]).

The process X is also two-dimensional, so let Xy and X, denote its components. Let P; :
R? — R, P((x1,x2)T) = xy, be the projection onto the first coordinate. Define the Lévy
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basis Ay on R™~ x Ras Aq(dry,ds) = P(A(P; " (dry),ds) and the Lévy measure py on
R as p1(dx;) = p(P; ' (dx1)). Then Ay has a generating quadruple (ay, %11, ph1, 1),
where 711 is defined with

X1

my (dr1) = l"%q) (=r) 7P 1R (r1) dry.

Also, it holds that
t
Xy (t) = / / e1(=5) AL (dry, ds).
R J—
From (5.13) it follows that

Cov (X1(71), X1(0))

1
= —/ erlra (211 s /sz yl(dx)) F/?;l)(—rl)al_leﬁrl drq

X1

— sy o O Zan (Zu+ [ ()

= 2(?211)('61 - ) (211 i+ /]sz Vl(dx)) :

Therefore, the correlation function for the process {X1(t), t € R} is given by

r(t) =B B+ ) (5.16)

By applying an analogous procedure, we obtain the expression for the covariance and cor-
relation functions of the process {X,(t), t € R}. Thus, for ay,ar € (1,2), we have
the property of long-range dependence in both components. Additionally, note that for
a1 = & + 1 and By = 1, we obtain the same process and the same correlation function as
described in Example 5.

The previous example is important because it demonstrates that we can define
a two-dimensional supOU process with predetermined marginal distributions
for the components X; and X,. We know that the marginal distributions of
the components are selfdecomposable distributions, given that these are one-
dimensional processes. Therefore, instead of specifying y, we can specify y; and
2 to ensure that the marginal distributions of the components are the desired
selfdecomposable distributions. If X has independent components, we can set
u(dxy, dxy) = py(dxq) x 6o(x2) + do(x1)H2(dxz), where &y is the Dirac distribution
with unit mass at 0.
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Summary

SupOU processes, or superpositions of Ornstein-Uhlenbeck type processes, be-
long to the class of stationary stochastic processes for which the marginal distri-
bution and dependence structure can be modeled independently. To define them,
the concepts of infinite divisibility and Lévy processes are first introduced. Their
basic properties are given, and the connection between them is explained. The
concept of selfdecomposable random variables is also defined, showing that they
constitute the class of marginal distributions of Ornstein-Uhlenbeck type pro-
cesses. Some basic properties of such processes are discussed, and the supOU
process is characterized as an infinite superposition of Ornstein-Uhlenbeck type
processes, obtained by randomizing the parameter using a probability measure.
To make sense of the integral defined in this way, the concepts of a homogeneous
infinitely divisible independently scattered random measure, or Lévy basis, and
integration with respect to such a measure are introduced. The formal definition
of the supOU process is then stated, followed by the derivation of the cumulant
functions of the marginal distributions. The expression for the autocorrelation
function of the supOU process is derived, showing that these processes can ex-
hibit long-range dependence. The integrated process is briefly explained as an
example important in applications. The definition of the supOU process is gen-
eralized to the multidimensional case, for which the conditions under which it
has moments of any order are shown, along with expressions for the expectation,
variance, and covariance of such a process.

Keywords

infinite divisibility, Lévy process, Ornstein-Uhlenbeck type process, Lévy basis,
supOU process, long-range dependence
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SupOU procesi

Sazetak

SupOU procesi, odnosno superpozicije procesa Ornstein-Uhlenbeckovog tipa,
spadaju u klasu stacionarnih slucajnih procesa kojima se marginalna distribu-
cija i struktura zavisnosti mogu modelirati nezavisno. Kako bismo ih definirali,
najprije su uvedeni koncepti beskonac¢ne djeljivosti i Lévyjevog procesa. Nave-
dena su neka njihova osnovna svojstva te je objasnjena veza izmedu njih. Defini-
ran je i pojam selfdecomposable slucajnih varijabli, za koje se pokazuje da ¢ine
klasu marginalnih distribucija procesa Ornstein-Uhlenbeckovog tipa. Navedena
su i neka osnovna svojstva takvih procesa, a supOU proces moZemo shvatiti
kao beskonacnu superpoziciju procesa Ornstein-Uhlenbeckovog tipa dobivenu
randomiziranjem parametra pomocu vjerojatnosne mjere. Da bismo mogli dati
smisao na taj nacin definiranom integralu, najprije je uveden pojam homogene
beskonacno djeljive nezavisno rasprsene slucajne mjere, odnosno Lévyjeve baze,
te integracije u odnosu na takvu mjeru. Iskazana je formalna definicija supOU
procesa, nakon koje su izvedeni izrazi za funkcije kumulanata marginalnih dis-
tribucija. Izveden je izraz za autokorelacijsku funkciju supOU procesa, iz kojeg
se vidi da ovi procesi mogu imati svojstvo dugoroc¢ne zavisnosti. Ukratko je ob-
jaSnjen integrirani proces, kao primjer vazan u primjenama. Definicija supOU
procesa poopcena je na viSedimenzionalan slucaj, za koji je pokazano uz koje
uvjete ima momente svakog reda te su dani izrazi za ocekivanje, varijancu i ko-
varijancu ovakvog procesa.

Kljuéne rijeci

beskonacna djeljivost, Lévijev proces, proces Ornstein-Uhlenbeckovog tipa, Lévi-
jeva baza, supOU proces, dugorocna zavisnost
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