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1 | Abstract

Real human skin shading based on the physically based rendering (PBR) is a chal-
lenging task that requires knowledge of mathematics, physics, and biology. The
main purpose of the PBR technique is to accurately reproduce how light behaves
in the real world, as opposed to earlier methods like the Phong and Blinn-Phong
lighting models. Aside from its visual realism, PBR grants artists practical ben-
efits and a convenient way of defining materials by physical properties, which
reduces the use of workaround techniques and ‘lighting trickery.” Furthermore,
even when authored with PBR, textures, and models do not look significantly dif-
ferent under different lighting conditions, a factor that usually requires tremen-
dous effort in non-PBR strategies. This paper describes and presents the basic
modeling and advanced rendering techniques for generating physically accurate
models, recalls the main approaches to using such techniques, and discusses new
tendencies in modeling skin. The described methods in this thesis were imple-
mented using modern GPUs and OpenGL's shading language for higher precision
and improved performance.






2 | OpenGL

2.1 Introduction to OpenGL

There are several ways to approach the topic of OpenGL, but before delving into
the technical details, we need to define what OpenGL is and what it serves in the
context of computer graphics. OpenGL is mainly considered an Application Pro-
gramming Interface (API) that provides developers with a large set of functions
that they can use to manipulate graphics and images. However, it is necessary
to make the important distinction here that OpenGL is not an API but a speci-
fication. This specification is created and sustained by the Khronos Group, an
industry consortium that is in charge of defining open standards in graphics and
parallel processing.

2.2 Specification and Implementation

Although the OpenGL specification fully describes the expected results of its func-
tions and the sequences of behaviors of the functions, it does not describe how
these functions are to be implemented. This distinction enables the development
of a more generic specification, which can be implemented in several ways de-
pending on the platform or hardware. Developers, especially graphics card de-
velopers, comply with the OpenGL specification by creating libraries that map
defined functions to operations that can be performed by the underlying hard-
ware. These implementations must be able to conform to the specification and be
able to give the same output no matter which platform it is run on, even though
the code may vary.

The role of the manufacturers of the graphic cards is especially important in
the context of the OpenGL environment. Usually, each graphics card works with
certain versions of OpenGL that are tailored to that particular piece of hardware.
This versioning is important because it determines the capabilities and compo-
nents that developers can implement in that card.

OpenGL like most graphical libraries can be different in terms of maintenance
and implementation depending on the operating system in use. For instance,
while on Apple platforms the OpenGL libraries are provided by Apple them-
selves, it is possible to maintain steady compatibility between the library and the
hardware/software environment. However, the implementations of OpenGL in
Linux may be direct implementations from the graphics card manufacturers, or
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they may be implemented by third-party open-source projects that supplement
these official libraries for different types of hardware and applications.

Due to these differences in implementation, developers may sometimes find
that OpenGL does not behave as expected in some contexts. These problems may
be due to specific support offered by the graphics card manufacturer, or the or-
ganization that maintains that library in a certain platform. It is critical to under-
stand this layered system of OpenGL including the specification as the top tier and
the hardware implementations and platform-specific adaptations as the lower tier
to fully utilize OpenGL in graphic development and in case of occurring problems.

2.3 Supporting Libraries and Extensions

One of the greatest strengths of OpenGL is its support of extensions. Every time
a graphics company comes up with a new trick or optimization for rendering,
it is usually rolled out as an extension in the drivers. This mechanism enables
the hardware vendors to bring in new functionalities that are not in the stan-
dard OpenGL. If the hardware on which an application runs supports such an
extension, then the developer can use these advanced features to improve or fine-
tune the graphics. This approach enables us to use new techniques as soon as
they become available without having to wait for them to be incorporated into the
OpenGL core versions. Before using these extensions, developers have to check
if they are available, which is usually done using extension querying functions or
libraries. This dynamic system allows the application to change its behavior de-
pending on the extensions that are installed, which makes the application more
versatile and efficient.

When modeling and rendering the scene’s 3D head model, several libraries are
used to improve the development processes and enhance the render. For example,
the GLFW library is used to create and organize the window and handle the user
input. GLFW is a cross-platform library that has been designed specifically for
this purpose. For image loading, the stb_image library is used to help load the
texture data from the image files into the OpenGL context. This library provides
a comparatively limited number of operations, but it is capable of opening images
of different formats. Additionally, to perform mathematical computations (like
matrix and vector operations) the GLM library is used.
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3 | Implementation

3.1 Initialization of OpenGL Context and GLFW
Window

The pipeline begins with the creation of the GLFW window and the GLAD
OpenGL loader. This function initiates the window context, verifies that the
OpenGL functions have been loaded before proceeding, and sets the context ver-
sion. If any of these initializations do not occur then the program is terminated.

GLFWwindow* initGLFWandGLAD (int width, int height) {
glfwInit () ;
glfwWindowHint (GLFW_CONTEXT_VERSION_MAJOR, 4);
glfwWindowHint (GLFW_CONTEXT_VERSION_MINOR, 6);
glfwWindowHint (GLFW_SAMPLES, 4);
glfwWindowHint (GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

GLFWwindow* window = glfwCreateWindow(width, height, "Window",
NULL, NULL);
if (window == NULL) A
std::cout << "Failed to create GLFW window" << std::endl;
glfwTerminate () ;
return nullptr;

¥

glfwMakeContextCurrent (window) ;
glfwSetFramebufferSizeCallback (window,
framebuffer_size_callback);

glfwSetCursorPosCallback (window, mouse_callback);
glfwSetScrollCallback (window, scroll_callback);
glfwSetInputMode (window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);

if (!'gladLoadGLLoader ((GLADloadproc)glfwGetProcAddress)) {

std::cout << "Failed to initialize GLAD" << std::endl;
return nullptr;

return window;
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3.2. GLOBAL OPENGL STATE CONFIGURATION 6

3.2 Global OpenGL State Configuration

The program configures and sets the OpenGL state variables upon initialization
of the program. This includes enabling depth testing, setting the depth function
for skybox rendering, and enabling seamless cube map sampling. These config-
urations are crucial to render the scene with the correct depth handling because
our scene is set in a 3D environment where objects overlap each other.

int main(){
GLFWwindow* window = initGLFWandGLAD (width, height);
if ('window) return -1;

glEnable (GL_DEPTH_TEST) ;
glDepthFunc (GL_LEQUAL) ;

glEnable (GL_TEXTURE_CUBE_MAP_SEAMLESS) ;

3.3 Shader Compilation and Linking

Shader programs are important in the OpenGL architecture, as they define how
vertices and fragments go through the pipeline. The implementation encom-
passes several shader programs like pbrShader, lensShader and background-
Shader that are compiled and linked from individual vertex and fragment shader
source files. The shader implementation is a set of classes developed in their re-
spective header files. These shaders are pre-configured as needed before the ac-
tual scene rendering begins, using the custom setupShaders() program function.
The full PBR shader implementation can be found in the next chapter, and the rest
of the shaders deal with the ambient light in the scene.

int main () {

Shader pbrShader ("pbr.vs", "pbr.fs");
Shader lensShader ("lens.vs", "lens.fs");
Shader equirectangularToCubemapShader (
"cubemap.vs", "equirectangular_to_cubemap.fs");
Shader irradianceShader (
"cubemap.vs", "irradiance_convolution.fs");
Shader prefilterShader ("cubemap.vs", "prefilter.fs");
Shader brdfShader ("brdf.vs", "brdf.fs");
Shader backgroundShader ("background.vs", "background.fs");

setupShaders (pbrShader , backgroundShader) ;

¥
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3.4 Loading Textures and Models

Textures and models are located in specific directories and are bound to their
respective classes through functions such as loadTexture() and through custom
classes like the Model class. Without these assets, it would be impossible to de-
velop realistic surfaces and geometry. For example, albedo, normal, specular,
roughness, AO, and displacement maps are loaded for all our models in order
to reach the intended result.
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int main{

// load all materials
// FACE:
unsigned int faceAlbedo =

loadTexture ((texturesPath + "Face_Albedo. jpg").c_str());

unsigned int faceNormal =
loadTexture ((texturesPath
unsigned int faceSpecular =
loadTexture ((texturesPath
unsigned int faceRoughness =
loadTexture ((texturesPath
unsigned int faceAOMap =
loadTexture ((texturesPath
unsigned int faceDisplacement
loadTexture ((texturesPath
O);

// EYES:

))'LENS:

// construct the models

+

+

"Face_Normal. jpg").c_str());

"Face_Specular. jpg").c_str());
"Face_Roughness. jpg").c_str());
"ao.png").c_str());

"Face_Displacement. jpg") .c_str

Model mainModel ((modelsPath + "model.obj").c_str());
Model eyeModel ((modelsPath + "realtime.obj").c_str());
Model lensModel ((modelsPath + "lens.obj").c_str());
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The Model class provides a framework for working with our 3D models. It utilizes
the Open Asset Import Library (Assimp) for importing various model formats
and the previously mentioned GLM library for mathematical operations. Assimp
can import dozens of different model file formats by loading all the model’s data
into its generalized data structures. As soon as it loads the model, we can retrieve
all the required data from its specific data structures. Because the data structure
of Assimp stays the same, regardless of the type of file format we imported, it
abstracts us from all the different file formats out there.

#ifndef MODEL_H
#define MODEL_H
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class Model

{
public:
vector<Texture> textures_loaded;
vector <Mesh> meshes;
string directory;
bool gammaCorrection;
Model (string const& path, bool gamma = false) : gammaCorrection
(gamma)
{
loadModel (path);
5
void Draw(Shader& shader)
i
for (unsigned int i = 0; i < meshes.size(); i++)
meshes[i] .Draw (shader) ;
b
private:
void loadModel(string const& path)
{
Assimp::Importer importer;
const aiScene* scene = importer.ReadFile(path,
aiProcess_Triangulate | aiProcess_GenSmoothNormals |
aiProcess_FlipUVs | aiProcess_CalcTangentSpace);
if (!scene || scene->mFlags & AI_SCENE_FLAGS_INCOMPLETE ||
!'scene->mRootNode) // if is Not Zero
{
cout << "ERROR::ASSIMP:: " << importer.GetErrorString()
<< endl;
return;
ik
directory = path.substr (0, path.find_last_of(’/’));
processNode (scene ->mRootNode , scene);
5
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3.5 Framebuffer Configuration

Following the creation of the models, the program creates the necessary frame
(FBOs) and render buffers (RBOs) to effectively handle off-screen rendering
which is essential in tasks such as environment mapping and post-processing.
The framebuffer configuration may include, for example, the binding of an RBO
for depth storage and texture attachment for color output. These configurations
are important when rendering scenes, not to the screen but into textures, allowing
for advanced effects like HDR environment mapping.

int main{

ik
2 o
3 unsigned int captureFBO;

4 unsigned int captureRBO;

5 glGenFramebuffers (1, &captureFB0);
6 glGenRenderbuffers (1, &captureRBO);
7

8

9

glBindFramebuffer (GL_FRAMEBUFFER, captureFBO);
glBindRenderbuffer (GL_RENDERBUFFER, captureRBO);

10 glRenderbufferStorage (GL_RENDERBUFFER, GL_DEPTH_COMPONENT24,
512; B512);
1 glFramebufferRenderbuffer (GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,

GL_RENDERBUFFER, captureRBO);
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3.6. ENVIRONMENT MAPPING AND CONVOLUTION 10

3.6 Environment Mapping and Convolution

The rendering pipeline transforms an HDR equirectangular environment map
into a cube map through the shader. This transformation involves the conver-
sion of the environment map into a set of cube faces that contain imported views
from the HDR image of the scene. Once the transformation is complete, the re-
sulting cube map is used to generate an irradiance map for diffuse lighting and a
pre-filtered environment map for specular reflections by using irradianceShader
and prefilterShader respectively. Such maps are necessary for PBR because they
allow the lighting to take into account the surrounding conditions. The following
code snippet illustrates a part of the conversion process.

int main{

equirectangularToCubemapShader.use () ;
equirectangularToCubemapShader.setInt ("equirectangularMap", 0);
equirectangularToCubemapShader.setMat4 ("projection",
captureProjection);

glActiveTexture (GL_TEXTUREO) ;

glBindTexture (GL_TEXTURE_2D, hdrTexture);

glViewport (0, 0, 512, 512);
glBindFramebuffer (GL_FRAMEBUFFER, captureFBO);
for (unsigned int i = 0; i < 6; ++1i)
{

equirectangularToCubemapShader.setMat4 ("view", captureViews
WS

glFramebufferTexture2D (GL_FRAMEBUFFER, GL_COLOR_ATTACHMENTO
, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, envCubemap, O);

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) ;

renderCube () ;

}
glBindFramebuffer (GL_FRAMEBUFFER, 0);
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3.7. MAIN RENDERING LOOP 11

3.7 Main Rendering Loop

In the main rendering loop, the program continuously updates based on the user
input and the elapsed time, thus providing real-time interaction. The scene is
made using the PBR shader which applies the data taken from the precomputed
IBL in the form of the irradiance map, pre-filter map, and the BRDF lookup texture
(LUT) to produce the desired accurate scene lighting and the objects contained
within the scene. It also ensures accurate reflections of objects in the environment.

int main{

while (!glfwWindowShouldClose (window))

{
// per-frame time logic and fps counter
updateDeltaTime (window) ;

processInput (window) ;

glm::mat4 view = camera.GetViewMatrix();

// model matrix

glm::mat4 model = glm::mat4(1.0f);

model = glm::scale(model, glm::vec3(0.1f));

// Specify the color of the background

glClearColor (0.2f, 0.3f, 0.3f, 1.0f);

// Clean the back buffer and depth buffer

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// render scene, supplying the convoluted irradiance map to
the final shader.

pbrShader.use () ;

pbrShader.setMat4 ("view", view);

pbrShader.setVec3 ("camPos", camera.Position);

// bind pre-computed IBL data

glActiveTexture (GL_TEXTUREO) ;

glBindTexture (GL_TEXTURE_CUBE_MAP, irradianceMap);
glActiveTexture (GL_TEXTURE1) ;

glBindTexture (GL_TEXTURE_CUBE_MAP, prefilterMap);
glActiveTexture (GL_TEXTURE2) ;

glBindTexture (GL_TEXTURE_2D, brdfLUTTexture) ;



N o G R W N e

10
11
12

13
14

3.7. MAIN RENDERING LOOP 12

Transparency is achieved for the lens model by first disabling depth testing and
then enabling blending while the rest of the non-transparent models have their
depth testing re-enabled.

glDisable (GL_DEPTH_TEST) ;
glEnable (GL_BLEND) ;
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

// Render the lens model

lensShader .use () ;

lensShader.setMat4 ("view", view);
lensShader.setMat4 ("projection", projection);
lensShader.setVec3 ("camPos", camera.Position);
lensShader.setMat4 ("model", model);

bindTexture ({ 0, lensNormal, O, O, lensAOMap, O, 0 1});
lensModel .Draw(lensShader) ;

glEnable (GL_DEPTH_TEST) ;
glDisable (GL_BLEND) ;

The main model’s shader is then activated and the model is drawn according to
our PBR pipeline.

pbrShader.use () ;

pbrShader.setMat4 ("view", view);

pbrShader.setMat4 ("projection", projection);

pbrShader.setVec3("camPos", camera.Position);

pbrShader.setMat4 ("model", model);

pbrShader.setMat3 ("normalMatrix", glm::transpose(glm::
inverse (glm::mat3(model))));

bindTexture ({ faceAlbedo, faceNormal, O, faceRoughness,
faceAOMap, faceSpecular, faceDisplacement 1});
mainModel .Draw (pbrShader) ;

bindTexture ({ eyesAlbedo, eyesNormal, O, eyesRoughness,
eyesAOMap, eyesSpecular, 0 });
eyeModel .Draw (pbrShader) ;
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3.7. MAIN RENDERING LOOP 13

The property of dynamic lighting is handled by updating the position and color
of the lights in the while loop, which simulates our desired light sources. We reset
the texture IDs for the lights to improve object clarity. The lights in the scene are
represented as spheres and their positions are managed by our PBR shader. Addi-
tionally, the skybox was rendered to cover the entire scene, preventing overdraw
and enabling accurate depth information for all elements.

// unbind textures for the lights
bindTexture({ 1, 0, 0, 0, 0, 0, 0 });

// render light source

unsigned int nr0fLights = 1; // max 4
for (unsigned int i = 0; i < nrOfLights; ++i) {
glm::vec3 newPos = lightPositions[i] + glm::vec3(sin(
glfwGetTime() * 5.0) * 5.0, 0.0, 0.0);
newPos = lightPositions[i];
pbrShader.setVec3("lightPositions [" + std::to_string(i) +
"1", newPos);

pbrShader.setVec3("lightColors[" + std::to_string(i) + "1",
lightColors[i]);

model = glm::mat4(1.0f);

model glm::translate (model, newPos);

model = glm::scale(model, glm::vec3(0.5f));

pbrShader.setMat4 ("model", model);

pbrShader.setMat3 ("normalMatrix", glm::transpose(glm::
inverse (glm::mat3(model))));

renderSphere () ;

¥

// render skybox (render last to prevent overdraw)
backgroundShader.use () ;
backgroundShader.setMat4 ("view", view);
glActiveTexture (GL_TEXTUREO) ;
glBindTexture (GL_TEXTURE_CUBE_MAP, envCubemap) ;
//glBindTexture (GL_TEXTURE_CUBE_MAP, irradianceMap); // display
irradiance map
//glBindTexture (GL_TEXTURE_CUBE_MAP, prefilterMap); // display
prefilter map
renderCube () ;

// Swap the back buffer with the front buffer
glfwSwapBuffers (window) ;

glfwPollEvents () ;

b

// Delete window and terminate GLFW before ending the program
glfwDestroyWindow (window) ;

glfwTerminate () ;

return O;






O ® N G e W N e

S S
S 0O 0 NN N e W N = O

4 | PBR Shader Implementation

The primary fragment shader that defines how the material (primarily skin) of
our 3D model looks is a PBR shader implemented with the help of the shader
class developed earlier. The shader applies the formally calculated lighting value
to each fragment’s otherwise black color and stores the resulting value in Frag-
Color. This is realized directly through initial lighting calculations and indirectly
by accounting for material, normal displacements (Normal Mapping), and envi-
ronment cube map (Image Based Lighting or IBL).

~
=y

fragment shader

#version 460 core

out vec4 FragColor; // <- end result (output)
in vec2 TexCoords;

in vec3 WorldPos;

in vec3 Normal;

// subsurface scattering

uniform vec3 sssColor = vec3(0.9, 0.5, 0.2);
uniform float sssScale = 0.6;
uniform float thickness = 0.1f;

// material parameters

uniform sampler2D albedoMap;
uniform sampler2D normalMap;
uniform sampler2D metallicMap;
uniform sampler2D roughnessMap;
uniform sampler2D aoMap;
uniform sampler2D specularMap;

The shader employs several texture maps to establish the characteristics of the
material that is being drawn. These maps include:

e Albedo Map: This texture provides the object with its base color before any
lighting or shading is applied. The shader applies a gamma correction to
the texture to ensure that the colors are correctly displayed under physically
based rendering.

3
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e Normal Map: This map is used to modulate the surface normals of the ma-
terial, creating the illusion of a complex surface while retaining the simple
geometry of the object. In other words, the normal map provides your tex-
ture depth. It’s used to adjust normals from tangent space to world space,
ensuring that accurate lighting calculations can occur.

e Metallic Map: This texture determines how metallic the surface appears.
Metallic surfaces reflect more light and exhibit sharper reflections compared
to non-metallic surfaces. Since the skin almost has no metallic properties, we
set the metallic ID to zero when binding textures.

e Roughness Map: This map determines the variation of the micro-surface
roughness of the material. A more irregular surface will scatter the reflected
light to a greater extent which results in the blurring of the reflected image
and on the other hand, a smoother surface provides more direct reflection of
light.

e Ambient Occlusion (AO) Map: This type of texture indicates those regions
where the space is small and narrow or where the light cannot penetrate. It
is applied to these areas so as to produce a darker (or lighter) hue and thus
make the material look as realistic as possible. At render time, this map is
mixed with the albedo to describe how it reacts to light.

e Specular Map: This map has been added to provide finer control over the
specular reflections, allowing the artist to specify regions with varying re-
flectivity beyond what is typically provided by the metallic map alone. Since
we are not using the metallic map, a specular map is used instead.

4.1 Lighting Calculations and BRDF

The Bidirectional Reflective Distribution Function (also known as BRDF) is a
model that analyzes the amount of light w; reflecting off a particular surface given
the incoming light direction w;, the outgoing direction w,, the surface normal 1,
and the surface roughness parameter 2. Depending on the material properties of
the surface it decides the proportion of the contribution made by each of the com-
ponent light rays to the resultant reflected output. For instance, if the surface is
perfectly smooth and mirror-like, the BRDF will be equal to 0.0 for every w; except
for the one at a reflective angle identical to w,, where it outputs 1.0.

The BRDF models the reflective and refractive properties of materials based on
microfacet theory. To ensure that the models are physically realistic, the process
has to conform to the law of conservation of energy, and thus the reflected inten-
sity can never be more than the incident light. Although Blinn-Phong is a type of
BRDF used for similar inputs, it does not possess true physical realism due to not
maintaining energy conservation. There are several physically based BRDFs out
there to approximate the surface’s reaction to light. However, almost all real-time
PBR render pipelines make use of a BRDF known as the Cook-Torrance BRDF.
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The Cook-Torrance BRDF contains both a diffuse and specular part:

f r = kdf lambert . ksf cook-torrance

Here, k; represents the ratio of incoming light energy that is refracted, while k;
indicates the ratio reflected. The left side of the BRDF equation, known as f,pert,
denotes the diffuse component, similar to Lambertian diffuse used in shading. It
is denoted as a constant factor:

f Cc
1 = —
ambert T

Here, c refers to the albedo or surface color, similar to the diffuse surface texture.
The division by 7w normalizes the diffuse light, compensating for the fact that the
integral involving the BRDF is scaled by 7.

Different, more realistic, (but also more computationally intensive) equations ex-
ist for the BRDF’s diffuse component. For our purposes, though, the Lambertian
diffuse meets the needs of all our real-time rendering tasks. The specular part of
the BRDF is a bit more advanced and is described as:

DEG
4(wy - n)(w;-n)

f CookTorrance —

The Cook-Torrance specular BRDF is composed of three functions and a normal-
ization factor in the denominator. Each of the D, F, and G symbols represents a
type of function that approximates a specific part of the surface’s reflective proper-
ties. These are defined as the normal Distribution function, the Fresnel equation,
and the Geometry function:

e Normal distribution function: approximates the amount the surface’s mi-
crofacets are aligned to the halfway vector, influenced by the roughness of
the surface; this is the primary function approximating the microfacets.

e Geometry function: describes the self-shadowing property of the micro-
tacets. When a surface is relatively rough, the surface’s microfacets can over-
shadow other microfacets reducing the light the surface reflects.

e Fresnel equation: The Fresnel equation describes the ratio of surface reflec-
tion at different surface angles.

Each function approximates its physical counterpart with multiple versions aim-
ing to capture the underlying physics more realistically or efficiently. It’s accept-
able to choose any approximated version for use. This implementation employs
the Trowbridge-Reitz GGX for D, the Fresnel-Schlick approximation for F, and
Smith’s Schlick-GGX for G.
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41.1 Normal Distribution Function D

The normal distribution function D statistically approximates the relative surface
area of microfacets exactly aligned to the (halfway) vector /. There are a multi-
tude of NDFs that statistically approximate the general alignment of the micro-
facets given some roughness parameter and the one we’ll be using is known as
the Trowbridge-Reitz GGX:

a2

((m-h)>(a? —1) + 1)

NDFcex tr(n, b, a) = p-

Here h is the halfway vector to measure against the surface’s microfacets, with a
being a measure of the surface’s roughness. The Trowbridge-Reitz GGX normal
distribution function translates to the following code:

float DistributionGGX(vec3 N, vec3 H, float roughness)
{

float a = roughness*roughness;

float a2 = a*a;

float NdotH = max(dot(N, H), 0.0);

float NdotH2 = NdotH*NdotH;

float nom az2;
float denom (NdotH2 * (a2 - 1.0) + 1.0);
denom = PI * denom * denom;

return nom / denom;

4.1.2 Geometry Function G

The geometry function statistically estimates how much the microscopic surface
details block each other and cause light rays to be occluded, taking the rough-
ness parameter as input where rougher surfaces are more likely to overshadow
microfacets. The chosen method combines GGX with Schlick-Beckmann approx-
imations, known as Schlick-GGX:

n-o
Gschtickaax (11,9, k) = (n-v)(1—k)

+k
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Here k is a remapping of a based on whether we're using the geometry function
for either direct lighting or IBL lighting:

(a+1)?
kdirect — T
2
a
kgL = >

To effectively approximate the geometry we need to take account of both the view
direction (geometry obstruction) and the light direction vector (geometry shad-
owing). We can take both into account using Smith’s method:

G(n,v,1,k) = Ggp (1,0, k)G (1,1, k)

The geometry function scales between [0.0, 1.0], where 1.0 (white) indicates no
microfacet shadowing and 0.0 (black) signifies complete microfacet shadowing.
The geometry function translates to the following code:

float GeometrySchlickGGX(float NdotV, float roughness)

{
float r = (roughness + 1.0);
float k = (r*xr) / 8.0;
float nom = NdotV;
float denom = NdotV * (1.0 - k) + k;
return nom / denom;
}
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
{

float NdotV = max(dot(N, V), 0.0);
float NdotL max (dot (N, L), 0.0);
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
float ggxl1 GeometrySchlickGGX (NdotL, roughness);

return ggxl * ggx2;
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4.1.3 Fresnel Function F

Using the Fresnel equation, we learned how the reflection-to-refraction ratio
varies with the angle of incidence which is the angle between the normal and
the ray of light. It determines the percentage of light reflected when it impacts
a surface, allowing us to calculate the refracted light based on energy conserva-
tion. Materials exhibit a base reflectivity at the normal viewing angle but show
increased reflectivity at glancing angles. This can be seen by looking at surfaces
such as desks, where reflections are more pronounced as the viewing angle ap-
proaches 90 degrees. This effect, known as Fresnel, occurs with all surfaces fully
reflecting light at perfect right angles. While the Fresnel equation itself is complex,
it's commonly approximated by the Fresnel-Schlick approximation:

Fsentick (1,0, Fo) = Fo+ (1 — Fp)(1 — (h-v))°

In code, the Fresnel Schlick approximation translates to:

vec3 fresnelSchlick(float cosTheta, vec3 FO0)

{
return FO + (1.0 - FO) * pow(clamp(1.0 - cosTheta, 0.0, 1.0), 5.0);
e

The irradiance map captures the diffuse component of the reflectance integral
from all indirect environmental light, treating both diffuse and specular indirect
lighting as ambient light. To appropriately account for the diffuse component,
the Fresnel equation is used to assess the surface’s indirect reflectance ratio, from
which the diffuse ratio is derived.

Unlike direct lighting, where the Fresnel response can be determined by a
halfway vector, ambient light’s omnidirectional nature precludes a singular vector
for Fresnel calculations. Instead, Fresnel is calculated using the angle between the
normal and view vector, disregarding surface roughness, which typically results
in a high reflective ratio. However, acknowledging that rough surfaces reflect less
at the edges, a roughness term can be incorporated into the Fresnel-Schlick equa-
tion, a method proposed by Sébastien Lagarde:

vec3 fresnelSchlickRoughness (float cosTheta,
vec3 FO,
float roughness)

return FO + (max(vec3(1.0 - roughness), FO) - FO) * pow(clamp
(1.0 - cosTheta, 0.0, 1.0), 5.0);
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41.4 PBR Shader Main Function

The first part of the main function retrieves material properties, which are found
in different texture maps. This process is done by sampling from pre-loaded 2D
textures at the fragment’s texture coordinates. Gamma correction is performed
on the albedo map to linearize the color values for accurate lighting calculations.
Then the shader dynamically calculates the normals from the normalMap by us-
ing a method of converting tangent space normals to world space. This allows
for enhanced surface detailing by accounting for lighting correctly across the 3D
geometry’s orientation. In the following snippet, N represents the surface nor-
mal in world space, and V is the view direction from the camera position to the
fragment’s world position. It also prepares the reflection vector R for calculating
specular reflections later on.

void main() {
vec3 albedo = pow(texture(albedoMap, TexCoords).rgb,vec3(2.2));
float metallic = texture(metallicMap, TexCoords).r;
float roughness = texture(roughnessMap, TexCoords).r;
float ao = texture(aoMap, TexCoords).r;
float specularValue = texture(specularMap, TexCoords).r;

vec3 N = getNormalFromMap () ;
vec3 V = normalize(camPos - WorldPos);
vec3 R reflect (-V, N);

The shader computes the Fresnel reflectance at normal incidence (Fy) based on
the surface albedo and its metallic property, which is later adjusted by the spec-
ular map value. This step is crucial in simulating how different materials reflect
light, where metals have a higher reflectance and a colored tint to their reflections
compared to non-metals. In our case, the skin’s metallic value is set to 0.

void main() {
vec3 FO = vec3(0.04);

FO = mix(FO, albedo, metallic);
vec3 FOWithSpecular = mix(FO0, vec3(specularValue), metallic);
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The direct lighting loop iterates over all the light sources and computes the con-

tribution of each

given light according to the Cook-Torrance BRDF equation. The

loop accumulates the diffuse and specular components for each light source which
are reduced by distance. It also accounts for subsurface scattering, making the fi-
nal render slightly more authentic. The loop is customizable and depends on the
number of rendered lights in the scene.

void main(){

vec3d Lo =

vec3(0.0) ;
for(int 1 = 0; i < 4; ++1)
{
// calculate per-light radiance
vec3 L = normalize(lightPositions[i] - WorldPos);
vec3 H = normalize(V + L);
float distance = length(lightPositions[i] - WorldPos);
float attenuation = 1.0 / (distance * distance);
vec3 radiance = lightColors[i] * attenuation;

// Cook-Torrance BRDF
float NDF = DistributionGGX (N, H, roughness);

float G = GeometrySmith (N, V, L, roughness);
vec3 F = fresnelSchlick(max(dot(H, V), 0.0),
FOWithSpecular);

vec3 numerator
float denominator

L), 0.0) +

NDF * G * F;
4.0 * max(dot(N, V), 0.0) * max(dot (N,

0.0001;

vec3 specular = numerator / denominator;

// kS is equal to Fresnel
vec3 kS = F;

vec3 kD =
1.0 - metallic;

kD x*=

vec3(1.0) - kS;

// scale light by NdotL
float NdotL = max(dot(N, L), 0.0);

// Subsurface scattering term (approximated)
vec3 sssDiffuse = sssColor * (1.0 - exp(-thickness *

sssScale *

// add
Lo +=
* NdotL;
}

NdotL) ) ;

to outgoing radiance Lo
(kD * albedo / PI + specular + sssDiffuse) * radiance
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Direct lighting is then followed by shader processing of the ambient lighting using
IBL techniques. It samples the irradianceMap to simulate diffuse lighting from the
environment and uses the prefilterMap and brdfLUT for environment reflections.
This part “‘places’ the object and its environment into the scene with its surround-
ings according to the roughness and view direction.

void main{

vec3 irradiance = texture(irradianceMap, N).rgb;

vec3 diffuse = irradiance * albedo;
vec3 prefilteredColor = texturelod(prefilterMap, R, roughness *

MAX_REFLECTION_LOD) .rgb;

vec2 brdf = texture (brdfLUT, vec2(max(dot(N, V), 0.0),
roughness)) .rg;

vec3 specularEnvironment = prefilteredColor * (F * brdf.x +
brdf.y);

Last but not least, the shader combines the calculated ambient, diffuse, and specu-
lar components alongside the direct light. The final output is then passed through
HDR tonemapping to address issues with high dynamic range lighting scenarios
and gamma correction to convert linear color space values back to sRGB for dis-
play purposes. This last step makes sure what the viewer sees in the end is as
close as possible to the artist’s intention, with realistic lighting and material ap-
pearances.

void maind{

vec3 color = ambient + Lo;
color = color / (color + vec3(1.0));
color = pow(color, vec3(1.0/2.2));
FragColor = vec4(color, 1.0);

}






5 | Model Render

We can see the finished product by building the project and rendering the scene
in Visual Studio which is available on the GitHub repository.

Figure 5.1: Top-right view Figure 5.2: Top-left view

Figure 5.3: Bottom-right view Figure 5.4: Bottom-left view
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