Title Problem dividendi za Brownovo gibanje
Title (english) Dividend Problem for Brownian Motion
Author Ana Maria Pejić
Mentor Danijel Grahovac (mentor)
Committee member Mirta Benšić (predsjednik povjerenstva)
Committee member Danijel Grahovac (član povjerenstva)
Committee member Nenad Šuvak (član povjerenstva)
Granter Josip Juraj Strossmayer University of Osijek Department of Mathematics (Chair of Pure Mathematics and Mathematics Teaching) (Probability, Mathematical Statistics and Data Science Research Group) Osijek
Defense date and country 2020-09-25, Croatia
Scientific / art field, discipline and subdiscipline NATURAL SCIENCES Mathematics Probability Theory and Statistics
Abstract U ovom diplomskom radu upoznali smo se s problemom isplate dividendi za tvrke čija
je vrijednost modelirana Brownovim gibanjem s pozitivnim driftom. U prvom uvodnom
poglavlju predstavili smo problem i motive zbog kojih je moralo doći do promjene modeliranja vrijednosti tvtke. U drugom poglavlju prvo smo definirali Brownovo gibanje, zatim ono najvažnije, predstavili model Brownovog gibanja s driftom. Također, u drugom poglavlju smo se upoznali s vjerojatnosti propasti i vremenom propasti. Treće poglavlje temelji se
na uvođenju strategija za isplatu dividendi, a detaljnije smo se bavili barijernom strategijom. Osvrnuli smo se i na posljedice koje strategija dividendi ima na definiranje vremena propasti te smo uveli pojam očekivane sadašnje vrijednosti svih dividendi isplaćenih do trenutka propasti kada se dividende isplaćuju barijernom strategijom. Dalje smo promatrali što
se s navedenim očekivanjem događa kada je kamata jednaka 0. Četvrto poglavlje donijelo nam je detaljinije rezultate o vremenu propasti pod barijernom strategijom. Predstavili smo očekivanu sadašnju vrijednost isplate dividendi iznosa 1 u trenutku propasti, koja nas je u konačnici dovela do detaljnijih rezulatata o distribuciji vremena propasti. Zatim smo analizirali, na prvi pogled neočitu, vezu između derivacije očekivane sadašnje vrijednosti svih dividendi isplaćenih do trenutrka propasti pod uvjetom da je početna vrijednost bila 0 te očekivane sadašnje vrijednosti isplate dividendi iznosa 1 u trenutku propasti uz uvjet da je
početna vrijednosti tvrtke bila upravo barijera b. Zatim smo se osvrnuli na rezultate koje donosi slučaj kada nam volatilnost teži u beskonačnost. U petom poglavlju smo predstavili funkciju izvodnicu sadašnje vrijednosti dividendi isplaćenih do trenutka propasti te rezultate koji nam slijede kada volatilnost teži u beskonačnost. U šestom poglavlju smo se osvrnuli
na funkciju izvodnicu akumuliranih dividendi isplaćenih do trenutka propasti. Za takvu funkciju, promatrali smo i slučaj kada nam pomak teži u 0. Posljednje sedmo poglavlje temelji se na određivanju optimalne barijerne strategije, odnosno optimalne barijere b ,kojom maksimiziramo očekivanu sadašnju vrijednost svih dividendi isplaćenih do trenutka propasti.
Abstract (english) Within this thesis, the problem of dividend payments for companies whose value is modelled by Brownian motion with a positive drift is investigated. The first introductory chapter
presents the problem and the motives for which the modelling of company values was required
to change. In the second chapter, we initially defined Brownian motion; then, more importantly, exhibited a model of Brownian motion with drift. Subsequently, the probability of
ruin and the time of ruin was introduced. The third chapter encompasses the introduction
of dividend payment strategies, as well as examining in further detail the barrier strategy.
We also analysed the consequences that result from the effect that the dividend strategy has
on defining the time of ruin, and introduced the notion of the expected present value of all
dividends paid until the moment of ruin when dividends are paid by the barrier strategy.
Furthermore, we observed what happens to the stated expectation when the interest rate is
equal to 0. The fourth chapter gave us more detailed results on the time of ruin under the
barrier strategy. We described the expected present value of the dividend payment of 1 at
the time of ruin, which ultimately led to more specific results on the distribution of the time
of ruin. We then further analysed the seemingly unobvious relationship between the derivation of the expected present value of all dividends paid up to the time of failure, provided
that the initial value was 0 and the expected present value of the payment of dividends of
1 at the time of ruin provided that the initial value of the company was a barrier b. We
then considered the results of a case where volatility tends to infinity. In the fifth chapter,
we depict the moment-generating function of the present value of dividends paid until the
moment of ruin and the results that ensue when volatility tends to infinity. The sixth chapter
pertains to the moment-generating function of accumulated dividends paid up to the time
of ruin. For such a function, we also perceived the case when the drift tends to 0. The final
chapter is based on determining the optimal barrier strategy, i.e. the optimal barrier b∗,
which maximizes the expected present value of all dividends paid until the moment of ruin.
Keywords
Brownovo gibanje s driftom
model vrijednosti tvrtke
vjerojatnost propasti
vrijeme propasti
dividende
strategija isplate dividendi
barijera
Keywords (english)
Brownian motion with a drift
company value model
the probability of ruin
the time of ruin
dividend payment strategy
a barrier
Language croatian
URN:NBN urn:nbn:hr:126:403209
Study programme Title: Mathematics; specializations in: Financial and Statistical Mathematics, Mathematics and Computer Science, Industrial and Applied Mathematics Course: Financial and Statistical Mathematics Study programme type: university Study level: graduate Academic / professional title: magistar/magistra matematike (magistar/magistra matematike)
Type of resource Text
File origin Born digital
Access conditions Open access
Terms of use
Created on 2020-10-01 07:28:06