Pages

Digitalni potpis
Digitalni potpis
Sanja Novaković
U ovom radu proučavamo digitalni potpis te neke od tehnika koje služe za njegovu izradu u teoriji i praksi. Najprije se dotićemo RSA algoritma koji su prvi puta javno opisali Ron Rivest, Adi Shamir i Leonard Adleman 1977. godine. To je prvi algoritam prikladan za potpisivanje i enkripciju podataka te se, pod pretpostavkom korištenja dovoljno dugih ključeva i ažurnih implementacija, smatra sigurnim. Nakon toga ćemo obraditi i Rabinovu shemu potpisa, zasnovanu na težini određživanja...
Diofantske jednadžbe
Diofantske jednadžbe
Violeta Ivšić
Kroz ovaj rad upoznat ćemo neke klasične diofantske jednadžbe. Primjenom osnovnih definicija i teorema, kroz primjere objašnjeno je njihovo djelovanje.
Direktan i semidirektan produkt grupa
Direktan i semidirektan produkt grupa
Andrea Šakić
U uvodom dijelu rada pročavati ćemo komplement i esencijalno disjunktne produkte te produkt dekompozicije. Glavni dio rada bavi se pojmom direktnog i semidirektnog produkta, karakterizacijom direktne sume grupa te ponekim primjerom. Navest ćemo univerzalna svojstva direktnog produkta i direktne sume te na kraju pročiti klasikaciju konačnih Abelovih grupa.
Diskalkulija, disleksija i matematika
Diskalkulija, disleksija i matematika
Anamarija Plašćak
Disleksija je jedna od nekoliko specifičnih teškoća u učenju. Postoji mnogo različitih defi- nicija disleksije, ali najjednostavnije je reći da je to poremećaj čitanja i pisanja. Disleksija se javlja u najranijem djetinjstvu i obično se otkriva u ranom školskom dobu. Pojavljuje se diljem svijeta bez obzira na kulturu i jezik zahvaćajući oko 10% populacije. Današnji stručnjaci pod pojmom diskalkulija podrazumijevaju skup specifičnih teškoća u učenju...
Diskretan slučajni vektor
Diskretan slučajni vektor
Mia Ćurić
Tema ovog završnog rada je diskretan slučajni vektor. Prvo ćemo reći nešto općenito o slučajnim vektorima i pojasniti funkciju distribucije slučajnog vektora pomoću koje opisujemo njegova svojstva. Razlikujemo diskretan i neprekidan slučajni vektor, a mi ćemo detaljnije obraditi diskretan slučajni vektor koji poprima vrijednosti iz konačnog ili prebrojivog skupa. U radu ćemo proučavati dvodimenzionalni diskretan slučajni vektor, a poopćenja za n-dimenzionalni se mogu...
Diskretne nejednakosti
Diskretne nejednakosti
Josipa Mandarić
Cilj ovog završnog rada je dati pregled nekih diskretnih nejednakosti za realne i kompleksne brojeve. To uključuje nejednakosti između osnovnih sredina, Cauchyevu nejednakost i neka njezina poopćenja i profinjenja, Hölderovu nejednakost te nejednakost Minkowskog. Nadalje, rad obuhvaća Abelovu i Čebiševljevu nejednakost te Grüssovu i Biernacki nejednakost. Na kraju, donosi kratki pregled nejednakosti za konveksne funkcije kao što su Jensenova i Petrovićeva nejednakost.
Distribucija ključa
Distribucija ključa
Inga Berghaus
U ovom diplomskom radu predstavit ćemo najvažnije sheme distribucije ključa. Tri glavne sheme su: Shema predistribucije ključa, Shema distribucije ključa određenog razdoblja i Shema dogovora ključa. Zatim ćemo iz svake od skupine shema promatrati neke značajnije i analizirati koliko su sigurne u slučaju napada. Od shema predistribucije ključa, objasnit ćemo Diffie - Hellmanovu predistribuciju ključa i Bloomovu shemu predistribucije ključa. Od uzoraka distribucije ključa,...
Dizajn eksperimenta i ANOVA procedure
Dizajn eksperimenta i ANOVA procedure
Matea Radan
U ovom radu predstavljene su ANOVA procudure i dizajn eksperimenta. Na početku rada dan je kratak osvrt na povijest statističkog dizajna eksperimenta. Nadalje, u prvom poglavlju dane su smjernice za dizajniranje eksperimenta kroz sedam koraka. U nastavku rada bavili smo se ANOVA procedurama. Opisan je jednofaktorski model analize varijance te je pojašnjen način provjere adekvatnosti modela. U slučaju nešto složenijih dizajna, kada želimo otkloniti dodatne utjecaje faktora smetnji,...
Dokazi geometrijskih tvrdnji pomoću kompleksnih brojeva
Dokazi geometrijskih tvrdnji pomoću kompleksnih brojeva
Anja Corn
U ovom radu su dani dokazi nekih vrlo poznatih teorema iz geometrije korištenjem kompleksnih brojeva. Najprije su sustavno razmatrani osnovni pojmovi i relacije vezane uz kompleksne broje koje se koriste u dokazima tvrdnji. Izvedene su jednadžbe geometrijskih figura koje se spominju u tvrdnjama. Primjenom kompleksnih brojeva dokazani su Eulerov, Feuerbachov, Morleyev, Ptolomej-Eulerov, Simsonov te Napoleonov i van Aubelov teorem.
Dokazi u nastavi matematike
Dokazi u nastavi matematike
Iva Babić
Dokazi u matematici imaju vrlo važnu ulogu i trebali bi imati svoje mjesto u nastavi matematike. Osim što utvđuju istinitost matematičkih tvrdnji, oni ih objašnjavaju te potiču učenike na logičko zaključivanje i deduktivno razmišljanje. Učenici iz njih mogu naučiti neke metode rješavanja problema i matematičke koncepte.Često ne shvaćaju zašto je dokazivanje tvrdnji potrebno i većina njih smatra da je za dokazivanje tvrdnje dovoljno naći odgovarajući primjer. Oni...
Dosezi pitagorejske matematike
Dosezi pitagorejske matematike
Lana Kozina
Pitagora sa Samosa često se prikazuje kao prvi ”pravi” matematičar. O njegovim dostignućima ne znamo mnogo jer su učenici filozofsko - religiozne škole, koju je osnovao, sva svoja otkrića pripisivala njemu. Budući da su u svom djelovanju koristili samo usmenu komunikaciju ne postoje sačuvani spisi Pitagore ili njegovih sljedbenika. Ono što se zna o njima doznajemo od drugih. Većina njihovih dostignuća opisana je oko 300. pr. Kr. u Euklidovim Elementima. Općenito,...
Dualni prostori
Dualni prostori
Doris Aleksov
Svaki vektorski prostor V ima odgovarajući dualni prostor koji se sastoji od lineranih funkcionala na V. Za ovako definiran dualni prostor pokazat ćemo kako odrediti njegovu bazu ukoliko poznajemo bazu vektorskog prostora V. Također, uvest ćemo i dual duala te pokazati da je on izomorfan početnom prostoru. Kao posebno zanimljiv potprostor dualnog prostora izdvojit ćemo anihilator te promotriti neka njegova važna svojstva.

Pages